Tag Archives: boiler feed water pumps

Case Study: Repeat Failures of Boiler Feed Water Pumps

Vespel®CR-6100 centrifugal pump components

Boiler Feed Pump Seizing Problems

The low lubricity of boiler feed water along with operational challenges can lead to pump seizures. How do you avoid the problem? Or, if it happens, what is the best way to solve the problem? This case study is about repeat seizures of two, new, 1.2 MW boiler feed water pumps operating in a refinery. The pumps were fitted with metal wear parts, ran at 2980 rpm, and experienced failures immediately after commissioning.

The Tale of the Terrible Boiler Feed Pumps

Here is a brief summary of the problems this site faced with their boiler feed pumps:
  1. The first failure was due to pump seizure, the original failure analysis suggested the pumps failed due to sand or debris lodging into the close clearance between rotating and stationary wear parts. The filters on the suction strainer were changed to a finer mesh to limit particle size which could enter the pump.
  2. Soon after, one of the pumps seized again–this time, the metal parts had galled before start up and the pump could not be rotated by hand. The clearances at the wear rings, center bushing, and throttle bushing were increased.
  3. The pumps seized again.
  4. Repeated start-up attempts against seized pumps had also damaged the pump motors.

The failure analysis led the engineers to re-check the entire design and installation of thepumps:

  • Re-checking the design basis of the pumps
  • Re-checking the materials of construction
  • Re-checking assembly and rotor run-out
  • Re-balancing the rotor
  • Performing a new pump rotordynamic analysis
  • Verifying soundness of foundation and that pipe strain within limits
  • Evaluation of operational practices and function of the minimum control valve

Minimum Flow Valve Problem

Ultimately, the site realized the minimum flow valve was not functioning properly, leading to low flow rates at start up. The low flow rates caused localized flashing inside the pump and the metal parts would seize.

Their corrective action was to change the minimum flow valve, increase the clearance at the center bushing, throttle bushing, and wear rings, and “upgrade” to a “non-seizing” metal alloy. Because they increased the clearance at all of the internal parts, they ran a new rotor dynamic analysis to verify that the rotor would remain stable.

How Much Did It Cost?

Between repeated pump repairs, motor overhauls, engineering resources to troubleshoot and re-verify the design, the problem undoubtedly cost hundreds of thousands of dollars. If start up was delayed or the site lost production, the losses were probably in the millions.
The solution was also extremely expensive. The clearance at the pump wear parts was permanently increased. We’ll generously assume the increased clearance resulted in a 2% efficiency loss. Assuming a power price of $0.12/kw-hr, this loss of efficiency will cost about $50,000/year. Over the life of the pumps, the site will lose another million dollars or more!

Avoid Pump Seizure By Using Vespel® CR-6100

If the site had specified Vespel® CR-6100 wear parts when the pump was ordered, the pump would not have seized. Most likely, the pumps would have made it through the low flow transients without issue and all of the efforts above could have been avoided. The motors would not have been damaged, and they would not have had to increase the internal clearances. Even after the first seizure occurred, they could have easily converted to Vespel® CR-6100 and saved time, effort, and cost. The small adder to specify Vespel® CR-6100 would have saved several hundred thousand dollars at a minimum.

Furthermore, because Vespel® CR-6100 does not seize, clearance at the wear rings, center bushing, and throttle bushing could have been reduced, resulting in an efficiency gain instead of an efficiency loss. So, instead of losing $50,000 per year in operating costs, the site could have saved at least $50,000 per year–a net $100,000 annual savings from using Vespel® CR-6100. Combined with the Boulden PERF-Seal® design, the pump would be more reliable, easier to operate, and more efficient than a pump with metal parts and increased clearance.

Conclusion

If you are buying or overhauling a boiler feed water pump, specify Vespel®CR-6100 for all of the stationary wear parts (the rotating parts will remain metal). You’ll have a better pump that is easier to operate with a lower life cycle cost due to higher efficiency. If you have an existing pump that seizes, contact Boulden today. We can help you solve this problem in just about any pump service.

If you simply have an urgent repair and need a great material fast, we have a large inventory of material in stock and can supply raw material or machined parts with very short lead times. If you have dimensions, quantities, and basic service conditions, simply request a quote. We’re here to help you!

Case Study: Upgrade of Boiler Feed Water Pumps

Boiler Feed Water pump upgraded with Vespel® CR-6100 componenets

BB5 boiler feed water pump upgraded to Vespel® CR-6100 with the PERF-Seal® design for the wear parts

Last week, we wrote about a boiler feed pump case history where the customer paid dearly because they didn’t use Vespel® CR-6100. Repeated failures due to pump seizure led them to increase the clearance at the wear rings, resulting in a lifetime of lower efficiency and higher operating costs.
Published right next to that unfortunate history was another boiler feed case study where the site and the shop involved took a set of 50-year-old boiler feed pumps and made them run better than when they were new. Unlike the first case history, they used Vespel® CR-6100.

The 50-Year-Old Pumps

The boiler feed pumps were originally installed in 1970 with 1.1MW electric motors. They are 8-stage BB5 pumps with 80 bar (1200 psi) differential pressure. Over many years of wear, erosion, and mechanical seal failures, the pumps needed to be overhauled.
The internal wear components were found to be running with clearance more than double the API design values for metal wear parts. The excessive clearance at the balance drum created high-velocity flow and erosion at the pump discharge cover. The seal design was outdated and the seal flush design was not correct. Some of the old pump components had very poor concentricity.

What They Did

The pump internals were repaired as needed. Obsolete parts were re-engineered and restored to good concentricity. The seal was updated and flush plan was corrected.
For the wear components, Vespel® CR-6100 wear rings, inter-stage rings, and balance drum bushing were installed with the patented Boulden PERF-Seal® design. Clearance at the wear components was reduced to approximately 50% of the API minimum values for metal parts. To save time and money in the shop, the existing metal wear components were re-machined and used as holders for the Vespel® CR-6100 components.

Results

Compared to the worn out condition, the pumps gained 15% efficiency after the overhaul. Depending on the local power price, this represents $100,000–$150,000 per year in lower operating costs.
Compared to the original design curve, the pump is 4% more efficient than when it was new, representing $30,000-$40,000 of lower operating costs. Maintaining this efficiency in the coming years will result in hundreds of thousands of dollars of savings.

Conclusion

If you are buying or overhauling a boiler feed water pump, specify Vespel®CR-6100 for all of the stationary wear parts (the rotating parts will remain metal). You’ll have a better pump that is easier to operate with a lower life cycle cost due to higher efficiency. If you have any pump where you are looking to increase efficiency, contact Boulden today. We can help you increase pump efficiency in most pumping services.
If you have an urgent repair and need a great material fast, we have a large inventory of material in stock and can supply raw material or machined parts with very short lead times. If you have dimensions, quantities, and basic service conditions, simply request a quote. We are here to help you.
Until next time, stay safe and healthy. And don’t use metal parts in your boiler feed water pumps.

A Look at Pump Life Cycle Costs – Part 2: Energy Savings

 

Typical Life-Cycle Cost For A Pump System Infographic

Typical Life-Cycle Cost For A Pump System

Today we continue our look at the above graph. Last week we looked at maintenance costs. Today, we look at energy consumption.

When you upgrade pumps with composite materials like Vespel® CR-6100, Boulden B-Series, or Metcar® composites, you can reduce the energy consumption. Reducing the energy consumption of the pump creates continuous and long lasting savings.

Higher Pump Efficiency = Energy Savings

Composite materials reduce the operating cost of a pump through increased efficiency. Because composite materials do not seize, the clearance at the main wear parts – wear rings, throttle bushings, center bushings, balance drums–can be reduced. These parts separate areas of high pressure and low pressure within the pump and reducing the clearance reduces the internal recirculation across these parts.

The target for this upgrade should be the higher power pumps in the plant, as the payout tends to increase with pump power. Multi-stage horizontal pumps tend to offer the best return on investment because they produce high pressure and the recirculation across many internal components has a significant impact on pump efficiency.

Average Energy Savings Of A Pump Running Full Time

Over the years, many boiler feed pumps, charge pumps, and product shipping pumps have been upgraded to Vespel® CR-6100. It is typical for the efficiency gain from reducing clearance in these pumps to fall within the range of 3-5% compared to the “as new” condition of the pump. So, if you have a 1000 HP (750 kW) pump running full time, the energy savings will likely be in the range of $20,000 – $30,000 per year. If we assume an 8 year run at higher efficiency, savings will accumulate to around $200,000.

Conclusion – Using High-Quality Composite Materials Help With Energy Savings 

In short, using quality composite materials like Vespel® CR-6100 with reduced clearance in your high energy pumps will pay for itself quite easily on energy savings alone. Next month, we’ll discuss some special situations where you can save even more money.

Until then, whatever the temperature, chemical, or operating conditions for your pump, it is likely that Boulden has a non-seizing, non-galling composite material to help you improve your pump efficiency and reliability. Boulden has a large inventory of material in stock and we can supply raw material or finished parts with very short lead times. We can provide all of the technical support required for you to make the upgrade a success.

Contact us today and use your next repair as an opportunity to upgrade your pump.

Save Money on Your Next BB3 Pump Overhaul

How to re-use the worn wear rings for better performance

Axially split, between bearings multi-stage pumps (API Type BB3) are used for some of the most important services in the hydrocarbon processing industry–charge pumps, boiler feed pumps, and product shipping/pipeline pumps.

The repair of these pumps is a great opportunity to upgrade with Vespel® CR-6100 or Boulden B-Series composite wear rings. In many situations, this will also be the most cost-effective way to rebuild the pump.

Cost of Repair
The reason these pumps offer a great value upgrade is because the case rings in axially split pumps can generally be re-used as holders for composite “inserts” as shown in figure 1.

This method of repair saves the cost of purchasing new case rings, or machining full rings with milled features. All of the work can be done on a lathe at the time of repair. First, you machine the inside bores of the existing case rings, throttle bushing, and center bushing. Then, you make the Vespel® CR-6100 inserts, press them in, and then final machine the parts to reduced clearance. This will increase the Lomakin Effect and efficiency of the pump.

Complete the remaining elements of the overhaul as you normally would. When the pump goes back into service, it should be easier to operate, more efficient, and more reliable.

Final Thoughts

If you have a BB3 pump coming through your shop for overhaul, consider upgrading to composite wear parts. Boulden can help you engineer the upgrade to Vespel® CR-6100 or Boulden B-Series and the patented Boulden PERF-Seal® design to ensure long-term reliable success. Contact us today. We have the material you need in stock.

Helpful Links:

Boulden Installation Guide for Vespel® CR-6100

Standard Stock Sizes of Vespel® CR-6100

Amine Stripping Pump Case Study

Today’s Photo

A rainbow over rolling hills

Andrà Tutto Bene (Everything Will Be Alright)

Useful Links for using DuPont™ Vespel® CR-6100

Tools to help you improve your pump operability, reliability, and efficiency

Our favorite material recently passed a milestone. The first pump ever fitted with Vespel® CR-6100 was upgraded 20+ years ago in November 1997.

The first pump was a vertically suspended condensate pump at a refinery in California. The pump was notorious for running dry, and it had failed once or twice per year for as long as the maintenance records went back. An engineer at the refinery “found” Vespel® CR-6100 and decided to put it to the test on the condensate pump. The pump survived repeated episodes of running dry and subsequently ran for many years without failure.

Since then, over 10,000 pumps across the globe have been upgraded with Vespel® CR-6100.

Useful Links
When you are using Vespel® CR-6100 in your shop, or if you are recommending your favorite repair shop to perform the upgrade for you, the following links should prove helpful:

Standard Stock Sizes of Vespel® CR-6100

Boulden Installation Guide for Vespel® CR-6100

Vespel® CR-6100 Product Data Sheet

Vespel® CR-6100 Machining Guide

3MW Boiler Feed Pump Case Study

If you have any questions please contact us, or if you already know what you need? Request a quote today.

Today’s Photo

Proboscis Monkeys, Borneo

Proboscis Monkeys, Borneo

Measuring Your Pump

Which information is needed in order to upgrade your pump to DuPont™ Vespel® CR-6100?

Pump Measurement Review

Using Vespel® CR-6100 wear parts with reduced clearance can help your pumps be more reliable, efficient, and easier to operate. Which measurements and which process data do we need to assemble for the upgrade?

Dimensions Needed for a Quote

Let’s start with the 3 dimensions we need to determine material sizes and availability shown in Figure 1:

  • “R” Outside diameter of the rotor running against the Vespel® CR-6100
  • “B” Inside diameter of the bore the Vespel® CR-6100 will press into
  • “L” Length of the bore
  • Alternative: the O.D., I.D., and Length of the existing parts

If we have those 3 dimensions for each part plus the quantity of each part required, we can provide a quote. Contact us if you have any questions.

Dimensions for designing a Vespel CR-6100 part

Figure 1: Dimensions for designing a Vespel CR-6100 part

 

Dimensions to Design

To design parts for fabrication, we will need the dimensions of the mating hardware. While many wear parts have a simple O.D., I.D., and Length profile, some parts have additional features for which we will want the dimensions:

  • Some pump wear rings have profiles like an “L”, “T”, or “Z”. In those situations we need to know each of the diameters and widths of any of the “shoulders” or “ribs” of the parts
  • Is the pump axially or radially split?
  • Are any of the parts are axially split?
  • For vertical pump shaft bearings, it will be helpful to know if there is any groove profile required-spiral grooves, axial grooves, how many, what diameter, how deep…
  • What is the existing material and clearance of the vertical pump shaft bearings?

Process Conditions

Vespel® CR-6100 works in most process services. It is manufactured from Teflon™ PFA and carbon fibers, so it is chemically resistant to nearly all process chemicals and it has a broad temperature range. There are only two general limitations:

  • Temperature range is cryogenic -300 F (-200 C) to 500 F (260 C)
  • Avoid abrasive slurries, slops, and bottoms services

To design the parts, the pump operating temperature is required in order to determine the correct press fit for the Vespel® CR-6100 parts.

Differential Pressure

If the components are going into a high-energy pump, such as a multi-stage horizontal charge pump or boiler feed water pump, we recommend that the patent-pending Boulden PERF-Seal™ design be used on all horizontal multi-stage pumps. The PERF-Seal™ design is fabricated from Vespel® CR-6100 and increases the efficiency gain and rotor damping associated with the upgrade. If the PERF-Seal™ is not used, we will need to know the differential pressure across the components in order to verify that they are designed correctly.

PERF-Seal™ center bushing from a boiler feed pump

PERF-Seal™ center bushing from a boiler feed pump

 

Conclusion

In the ideal situation, you can supply the dimensions of the parts required, the pump cross-sectional drawing, and the API data sheet for the pump. From this information, we can confirm that the service is a good fit for Vespel® CR-6100, quote the material or machined parts required, and make a recommendation on how to install Vespel® CR-6100 into the pump.

Please feel free to contact Boulden with your application details and dimensions. We’ll be happy to provide a budget estimate or a fixed quote depending on the information available. Once you decide to go forward with the upgrade, we have whatever material you need in stock in the USA, Europe, and Singapore.

Helpful Links:

Standard Stock Sizes of Vespel® CR-6100

Vespel® CR-6100 Product Data Sheet

Vespel® CR-6100 Machining Guide

3MW Boiler Feed Pump Case Study

 

Today’s Photo:

Petronas Towers, Kuala Lumpur, Malaysia

Petronas Towers, Kuala Lumpur, Malaysia

 

Reformer Feed Pump Case Study

A long-term success story

Almost 10 years ago, a refinery in Europe upgraded their Reformer Feed pumps to DuPont™ Vespel® CR-6100. Last month, we checked in to see how the pumps are running.

The Application

The Reformer Feed pumps are 10-stage, axially-split, between-bearings pumps (API Type BB3), running at 2950 RPM. The product is naphtha at 185 C (365 F). There is one pump in the service, plus a spare rotor in the warehouse.

Problems in the Past

Marginal suction conditions make this a very tough service. The pumps take suction from a stabilizer tower bottom with NPSHA of only about 3 meters (10 feet). Due to the low NPSHA, it is very easy for the fluid to vaporize in the pump during start-up, causing the pump to run dry. This was formerly the normal reason for repairs due to the metal wear parts galling and seizing. If the metal parts did not seize, the throttle bushing would wear out, causing seal failures at the non-drive end.

Vespel CR-6100 wear parts

Vespel CR-6100 wear parts are installed as “inserts” into the existing metal parts for axial split pumps running at elevated temperatures.

Vespel® CR-6100 Survives

In 2009, the first pump in the service was upgraded with Vespel® CR-6100 case wear rings, center bushing, and throttle bushing. By eliminating the metal-to-metal contact points in the pump, the risk of pump seizure was essentially eliminated. Once the original pump upgrade proved successful, the spare rotor was also upgraded, but it has never been installed. The original pump upgraded is still running today. The refinery engineer commented:

We know for sure the product has vaporized in the pump at least 3 times since the upgrade, with seal failures as the only damages. We haven’t exchanged the rotor yet, although we have the spare rotor upgraded in 2010 in the warehouse. So far, no one expects the rotor to be exchanged.

As an added bonus, the site notes that they achieved a significant efficiency increase with the upgrade, which allowed an increase in unit throughput of 10%.

Vespel CR-6100 Conclusion

Where the refinery suffered with multiple failures of metal parts in the past, the Reformer Feed pump has now been running nearly 10 years with Vespel® CR-6100. The upgrade has paid for itself many times over with better reliability, efficiency, and ease of operation.

If you have a service causing you headaches, or if you are looking to increase throughput on one of your feed pumps, contact Boulden today. We have Vespel® CR-6100 in stock in a wide range of sizes in the USA, Europe, and Singapore and we can assist with any application or design questions you have. If you know what you need, just request a quote. Until next time, be safe.

 

Helpful Links:

Standard Stock Sizes of Vespel® CR-6100

Vespel® CR-6100 Product Data Sheet

Vespel® CR-6100 Machining Guide

3MW Boiler Feed Pump Case Study

Today’s Photo

Moselle river between Luxembourg and Germany

Moselle River Between Luxembourg and Germany

Moselle River Between Luxembourg and Germany

Contact Us Today To Learn More About Vespel and Boulden Company!

 

 

 

 

 

 

 

 

14 Reasons to Reduce Wear Ring Clearance

Use DuPont™ Vespel® CR-6100 to reduce the clearance in your pumps and improve pump reliability and efficiency.

Vespel CR-6100 Review

A couple weeks ago, we looked at all of the negative consequences from increasing the wear part clearance in you pumps: wear rings, inter-stage rings, throttle bushings, and center bushings. In the past, increasing the clearance was a typical response to pump seizure.

Now, there is a better way to address the issue and make your pump more reliable and efficient at the same time. Instead of increasing the clearance of the metal parts, replace the stationary wear parts with non-seizing, non-galling Vespel® CR-6100 and reduce the clearance. With this simple change, all the contact points in the pump become metal-to-composite and the risk of seizure is minimized.

What if you reduce the clearance?

Because Vespel® CR-6100 is non-seizing, you can safely reduce the clearance at the wear parts in your pumps. Even if the pump runs dry, Vespel® CR-6100 will not seize like metal components.

 

 

When you reduce the clearance at your wear parts, essentially every aspect of the pump hydraulic performance improves. Reduced clearance also tends to produce lower vibration levels. In short, the pump will likely be easier to operate, more reliable, and consume less power.

 

14 Benefits of Reduced Clearance using Vespel CR-6100 

 

Hydraulic Benefits Mechanical Benefits
Higher head Increased rotor stiffness
Higher flow–higher potential maximum flow rate Potentially lower vibration
Increased efficiency–reduced power consumption Potentially reduced shaft deflection
Lower NPSHR–lower risk of cavitation Reduced risk of shaft breakage
Reduced motor load Potentially longer seal life
Steam turbine drivers can run at lower speeds Potentially longer bearing life
Reduced need to run pumps in parallel Reduced potential for motor tripping or over-heating

 

The PERF-Seal™

The benefits of reducing the clearance can be augmented using the patented Boulden PERF-Seal™ design. The design is simple to implement, increases the potential efficiency gain from the upgrade, adds a significant amount of hydraulic damping, and generally amplifies the benefits of your upgrade to Vespel® CR-6100. Contact Boulden for details.

Two-stage product shipping pump upgraded with the PERF-SEAL deign

The Poster Pump, continued…

Two weeks ago, we wrote about an 11-stage horizontal pump which had seized several times. Each time it seized, the wear part clearance was increased. After the clearance had been increased multiple times, the pump would vibrate beyond alarm limits and the pump was no longer operable.

The plant upgraded the pump with Vespel® CR-6100 case rings, center bushing, and throttle bushing, using the Boulden PERF-Seal™ design. They subsequently reduced the clearance to less than the original design clearance. After the upgrade, the pump ran without seizing, very low vibration, and a significant efficiency gain.

 

Conclusion

What do you think of our list of benefits from reduced clearance? Is there anything we should add? Anything you disagree with? Let us know your ideas. We will be happy to hear from you.

 

Until next time, if you have a pump in your shop which can benefit from an upgrade to Vespel® CR-6100 and reduced clearance, contact Boulden. We can answer your questions and we have material in stock and available for immediate shipment.

 

Helpful Links:

Standard Stock Sizes of Vespel® CR-6100

Vespel® CR-6100 Product Data Sheet

Vespel® CR-6100 Machining Guide

3MW Boiler Feed Pump Case Study

Today’s Photo

Place Stanislas is considered to be one of, if not the most beautiful royal squares in Europe. It was added to UNESCO’s World Heritage List in 1983.

Contact Us Today To Learn More About Vespel and Boulden Company!

 

 

14 Reasons to Avoid Increased Wear Ring Clearance

If you increase the clearance, the long-term reliability and efficiency of the pump will suffer.

Happy Summer!

We hope you have had a chance to enjoy your summer holidays. From New Orleans to Narvik, it’s hot out there, so be safe, and wear sunscreen.

In our messages, we frequently highlight how Vespel® CR-6100 does not seize and therefore allows you to reduce the clearance at the wear parts in your pumps: wear rings, inter-stage rings, throttle bushings, and center bushings.

Today we want to look at things from another perspective–negative effects which can happen to your pump when you increase the clearance at the wear parts.

 

What can happen when you increase clearance?

If a process plant has a problem with a pump seizing during operation or galling during commissioning, the traditional response has been to increase the clearance at the wear parts.

Metal Case Ring After a Boiler Feed Pump Seizure

 

Although increasing the clearance might make the pump operable in the short term, there are several negative consequences from increased clearance.

Hydraulic Effects Mechanical Effects
Lower head Reduced rotor stability
Lower flow Potentially higher vibration
Lower efficiency–increased power consumption Potentially higher shaft deflection
Higher NPSHR–greater risk of cavitation Increased risk of shaft breakage
Higher motor load Potentially shorter seal life
Need to run steam turbines at higher speed Potentially shorter bearing life
Higher likelihood of needing to run pumps in parallel Higher risk of motor over-heating or tripping from excessive load

So, while you don’t want your pumps to seize, increasing the clearance can create some major issues. At a minimum increased clearance drives up the operating cost of the pump and likely compromises the long term reliability of the machine.

 

The Poster Pump

A while back, one of our clients had an 11-stage horizontal pump which was originally supplied with metal wear components. The pump seized soon after start-up, and the recommendation from the OEM was to increase the clearance. The pump seized again. The second recommendation was to use a “non-galling” metal alloy to address the problem. The pump seized again. The clearance was increased one more time. When the pump was started again, the overall pump vibration levels were beyond alarm limits. The multiple increases in clearance had resulted in a loss of rotor stability to the point that the pump was no longer operable.

The end of the story will be in our next email…

 

Conclusion

Until next time, if you have a pump in your shop which has galled or seized, contact Boulden to discuss an upgrade to Vespel® CR-6100. We will be happy to work through the details of the upgrade with you and we have material in stock and available for immediate shipment.

 

Helpful Links for Vespel and Pump Case Studies:

Standard Stock Sizes of Vespel® CR-6100

Vespel® CR-6100 Product Data Sheet

Vespel® CR-6100 Machining Guide

3MW Boiler Feed Pump Case Study

Today’s Photo’

Rossio Square in Lisbon Portugal with famous wave pattern stone pavement.

Contact Us Today To Learn More About Vespel and Boulden Company!

 

 

 

 

 

Make Your Vertical Pump Shaft Bearings Last Longer

DuPont™ Vespel CR-6100 resists seizing, can run dry, has high impact resistance, and a low wear rate for a long life under a wide range of process conditions.

Vertically Suspended Pumps

Vertically suspended pump types (API types VS1-VS7) use long, flexible shafts which are supported by a series of product-lubricated shaft bearings. Vespel® CR-6100 is a great upgrade for these components.

 

Typical Vespel Services

Vertically suspended pumps can be divided into two general categories: discharge through column (API Types VS1, VS2, VS3, VS6, and VS7) and separate discharge (VS4 and VS5).

 

Discharge through column pumps tend to be used in light, flashing products like butane, LPG, and natural gas liquids, or in water condensate or cooling water intake service. In flashing services, it is not uncommon for these pumps to run dry temporarily at start up, which can be a challenge for the shaft bushings. In many of these pumps the flexible shaft can create very large loads, leading to high wear rates of traditional materials.

 

Separate discharge pumps tend to be used as sump pumps. In API Type VS4 pumps, the shaft bearings can run dry at start-up until the flushing fluid arrives. Sometimes, the external water flush is turned off; sometimes the flush lines from the process fluid are plugged; sometimes the bearing grease is insufficient. In a chemical sump, the mix of chemicals can cause corrosion issues.

Vespel® CR-6100 Replaces Traditional Materials

Most vertical pump shaft bearings are made from either bronze/cast iron, carbon/graphite based materials, or stainless steel alloys. Bronze/cast iron bearings can have a high wear rate. Carbon/graphite bearings can break. Stainless steel bearings can seize.

 

Vespel® CR-6100 can replace all of these materials in process conditions from cryogenic to 500 F (260 C). Vespel® CR-6100 is low friction with a low wear rate. It is durable and impact resistant so it resists breakage during installation, transport, and operation. Plus, Vespel® CR-6100 does not seize like metal parts and is capable of surviving the run dry conditions which can occur with the flashing process fluids.

 

Documented Results

Consider the results from a long term study at an oil refinery. The plant upgraded 22 vertical pumps to Vespel® CR-6100 wear parts. The pumps were operating in light hydrocarbons, flare knock out drum, and several stop/start services like product transfer, comprising many “bad actors” in the plant. Looking at the number of repairs within this population for 5 years before Vespel® CR-6100 and 5 years after, the plant found the following.

 22 Vertical Pumps Number of Pump Repairs MTBR for the Population
5 Years Before

Vespel® CR-6100

40 2.75 years
5 Years After 

Vespel® CR-6100

8 13.75 years

Final Notes

Next time you are rebuilding a vertically suspended pump, consider upgrading the shaft bearings to Vespel® CR-6100. Contact Boulden with your process conditions and we will be happy to let you know if Vespel® CR-6100 is a good fit for your pump.

 

The Vespel® CR-6100 installation guide will walk you through the installation process. Vespel® CR-6100 is easy to machine and install, and Boulden is always happy to help if you have any questions. Finally, we have large quantities of Vespel® CR-6100 in stock and ready for immediate delivery in North America, Europe, and Southeast Asia.

 

Helpful Vespel Links:

Standard Stock Sizes of Vespel® CR-6100

Vespel® CR-6100 Product Data Sheet

Vespel® CR-6100 Machining Guide

3MW Boiler Feed Pump Case Study

 

Todays Photo

Bernkastel-Kues, Germany

 

Contact Us Today To Learn More About Vespel and Boulden Company!