Tag Archives: Series on upgrading pumps to Vespel

Make Your Vertical Pump Shaft Bearings Last Longer

DuPont™ Vespel CR-6100 resists seizing, can run dry, has high impact resistance, and a low wear rate for a long life under a wide range of process conditions.

Vertically Suspended Pumps

Vertically suspended pump types (API types VS1-VS7) use long, flexible shafts which are supported by a series of product-lubricated shaft bearings. Vespel® CR-6100 is a great upgrade for these components.

 

Typical Vespel Services

Vertically suspended pumps can be divided into two general categories: discharge through column (API Types VS1, VS2, VS3, VS6, and VS7) and separate discharge (VS4 and VS5).

 

Discharge through column pumps tend to be used in light, flashing products like butane, LPG, and natural gas liquids, or in water condensate or cooling water intake service. In flashing services, it is not uncommon for these pumps to run dry temporarily at start up, which can be a challenge for the shaft bushings. In many of these pumps the flexible shaft can create very large loads, leading to high wear rates of traditional materials.

 

Separate discharge pumps tend to be used as sump pumps. In API Type VS4 pumps, the shaft bearings can run dry at start-up until the flushing fluid arrives. Sometimes, the external water flush is turned off; sometimes the flush lines from the process fluid are plugged; sometimes the bearing grease is insufficient. In a chemical sump, the mix of chemicals can cause corrosion issues.

Vespel® CR-6100 Replaces Traditional Materials

Most vertical pump shaft bearings are made from either bronze/cast iron, carbon/graphite based materials, or stainless steel alloys. Bronze/cast iron bearings can have a high wear rate. Carbon/graphite bearings can break. Stainless steel bearings can seize.

 

Vespel® CR-6100 can replace all of these materials in process conditions from cryogenic to 500 F (260 C). Vespel® CR-6100 is low friction with a low wear rate. It is durable and impact resistant so it resists breakage during installation, transport, and operation. Plus, Vespel® CR-6100 does not seize like metal parts and is capable of surviving the run dry conditions which can occur with the flashing process fluids.

 

Documented Results

Consider the results from a long term study at an oil refinery. The plant upgraded 22 vertical pumps to Vespel® CR-6100 wear parts. The pumps were operating in light hydrocarbons, flare knock out drum, and several stop/start services like product transfer, comprising many “bad actors” in the plant. Looking at the number of repairs within this population for 5 years before Vespel® CR-6100 and 5 years after, the plant found the following.

 22 Vertical Pumps Number of Pump Repairs MTBR for the Population
5 Years Before

Vespel® CR-6100

40 2.75 years
5 Years After 

Vespel® CR-6100

8 13.75 years

Final Notes

Next time you are rebuilding a vertically suspended pump, consider upgrading the shaft bearings to Vespel® CR-6100. Contact Boulden with your process conditions and we will be happy to let you know if Vespel® CR-6100 is a good fit for your pump.

 

The Vespel® CR-6100 installation guide will walk you through the installation process. Vespel® CR-6100 is easy to machine and install, and Boulden is always happy to help if you have any questions. Finally, we have large quantities of Vespel® CR-6100 in stock and ready for immediate delivery in North America, Europe, and Southeast Asia.

 

Helpful Vespel Links:

Standard Stock Sizes of Vespel® CR-6100

Vespel® CR-6100 Product Data Sheet

Vespel® CR-6100 Machining Guide

3MW Boiler Feed Pump Case Study

 

Todays Photo

Bernkastel-Kues, Germany

 

Contact Us Today To Learn More About Vespel and Boulden Company!

The Final Installation Steps: Length and Clearance

Upgrading pumps with composite wear componentsSetting the final dimensions of your DuPont™ Vespel CR-6100 component

Review

We have discussed how to measure your pump, prepare the metal parts, and establish the press fit for your Vespel® CR-6100 installation. The final two dimensions you need to establish are the part length and the clearance.

The Part Length

Vespel® CR-6100 has an extremely low coefficient of thermal expansion in the radial plane (perpendicular to rotation). This is one of the principal reasons it performs so well in centrifugal pump components. The low coefficient of thermal expansion is achieved through the use of radially-oriented, long carbon fibers.

Conversely, the coefficient of thermal expansion along the axis is relatively high. Therefore, the part length for a Vespel® CR-6100 component should account for the axial thermal expansion at operating temperature. Table 4 of our installation guide provides the details on how to make this adjustment.

Table 4 of our installation guide provides the details on how to make this adjustment.

The Clearance

The clearance for the part is set depending on the diameter and component type. Tables 2a and 2b in the installation guide show the clearance recommendations for horizontal pump components such as pump wear rings, throttle bushings, center bushings, inter-stage rings, balance bushings, and throat bushings.

Tables 2a and 2b provide recommended minimum clearance for horizontal pump components.

Tables 3a and 3b show the clearance recommendations for vertical pump components like vertical pump shaft bearings, wear rings, and throat bushings.

Tables 3a and 3b provide recommended minimum clearances for vertically suspended pump parts.

The best way to set the clearance is to press the component into place, and then final machine the bore to the desired clearance. This is shown in steps 5a-7a in our installation guide, pages 8-9.

Where final machining after the press fit is not practical, you can design the component to have the correct clearance after the press fit. For most component geometries, you can assume the Vespel® CR-6100 will reduce at a 1:1 ratio with the press fit. This method is shown in steps 5b-7b in our installation guide, page 9.

Some sites have implemented a hybrid method. They measure the inside diameter of the Vespel® CR-6100 case wear ring after installation, and then machine the metal impeller wear ring to set the desired clearance.

Conclusions

Installing Vespel® CR-6100 is an easy upgrade to make your pumps more reliable, safe, and efficient. Follow the steps in our  installation guide and you can make your pump even better than the day it was new. If you need material, Boulden carries inventory of stock sizes in the USA, Europe, and Singapore.

Until next time, please feel free to contact Boulden with your application details or to request a quote. We’ll be happy to answer any questions you might have.

 

Helpful Links:

Standard Stock Sizes of Vespel® CR-6100

Vespel® CR-6100 Product Data Sheet

Vespel® CR-6100 Machining Guide

3MW Boiler Feed Pump Case Study

Today’s Photo

Rock of Gibraltar – was one of the Pillars of Hercules and was known to the Romans as Mons Calpe.

 

Contact Us Today To Learn More About Vespel and Boulden Company! 

The Interference Fit – Setting the interference fit value for DuPont™ Vespel CR-6100

The interference fit value for DuPont™ Vespel CR-6100

Review

We have discussed how to measure your pumps and prepare the metal parts. The next step is to machine the DuPont™ Vespel® CR-6100 part to have the correct dimensions.

Remember, Vespel® CR-6100 is used for stationary wear parts like wear rings, throttle bushings, and vertical pump shaft bearings. The rotating components running against the Vespel® CR-6100 remain metal. The Vespel® CR-6100 components are installed with an interference fit (aka “press fit”).

 

Installation Guide for Vespel CR-6100

The Boulden Installation Guide for Vespel® CR-6100 Tables 1a (Imperial) and 1b (Metric) outline the interference fit values for a Vespel® CR-6100 component based on diameter and the pump operating temperature.

If you only want the right value, follow the guide. You can stop reading and contact Boulden whenever you need material or if you would like to request a quote. If you want to know how we arrived at the values, continue reading.

 

Low Coefficient of Thermal Expansion

Vespel® CR-6100 has an extremely low coefficient of thermal expansion–about 60% lower than carbon steel in the radial plane. This property is one of the reasons Vespel® CR-6100 can survive pumps running dry and avoiding seizure.

The low coefficient of thermal expansion is a main factor in the interference fit value. At elevated temperatures, the metal parts will thermally expand more than the Vespel® CR-6100 parts. Therefore, as pump operating temperature increases, the interference fit increases.

 

Vespel CR-6100 Low Modulus of Elasticity

Vespel® CR-6100 parts press in relatively easily due to a very low modulus of elasticity. Vespel® CR-6100 can be used in temperatures up to 500 F (260 C). At maximum operating temperature, the recommended interference fit can be quite high. Due to the low modulus, the material generally presses in without issue.

 

Small Pilot Fit

To facilitate the large interference fit, machine a small pilot or “step” on the leading edge (Figure 1) of the Vespel® CR-6100 component. This will help the part sit squarely in the bore as it is being pressed in (Figure 2).

Figure 1: Pilot Fit on leading edge to facilitate press fit

Figure 2: Press fit operation

No Pins or Screws Required

Once Vespel® CR-6100 is installed with a press fit and a shoulder to retain the part against differential pressure, no further retention of the components is required. There are thousands of pumps running for many years with Vespel® CR-6100 components without retaining pins or screws.

If you insist on using retaining pins with Vespel® CR-6100, contact Boulden and we will discuss the possible designs given your part geometry.

 

Conclusions

When installing Vespel® CR-6100, make sure you are using the correct interference fit. Download our installation guide for the full installation procedure. If you need material, Boulden carries inventory of stock sizes in the USA, Europe, and Singapore.

Until next time, please feel free to contact Boulden with your application details or to request a quote. We’ll be happy to answer any questions you might have.

 

Helpful Links:

Standard Stock Sizes of Vespel® CR-6100

Vespel® CR-6100 Product Data Sheet

Vespel® CR-6100 Machining Guide

3MW Boiler Feed Pump Case Study

If you need any material or have any questions. Please contact us today. Until next time.

Contact Us Today To Learn More About Vespel and Boulden Company!

 

 

 

 

Todays Photo

Grand Canyon, Arizona USA

 

Boulden Company – Conshohocken, PA, USA | 1-610-825-1515

Boulden International, S.ar.L – Ellange, Luxembourg | +352 26 39 33 99

Measuring Your Pump

Upgrading pumps with composite wear components

Which information is needed in order to upgrade your pump to DuPont™ Vespel® CR-6100?

Review

Using Vespel® CR-6100 wear parts with reduced clearance can help your pumps be more reliable, efficient, and easier to operate. Which measurements and which process data do we need to assemble for the upgrade?

Dimensions Needed for a Quote

Let’s start with the 3 dimensions we need to determine material sizes and availability shown in Figure 1:

  • “R” Outside diameter of the rotor running against the Vespel® CR-6100
  • “B” Inside diameter of the bore the Vespel® CR-6100 will press into
  • “L” Length of the bore
  • Alternative: the O.D., I.D., and Length of the existing parts

If we have those 3 dimensions for each part plus the quantity of each part required, we can provide a quote

Dimensions of Design

Figure 1: Dimensions for designing a Vespel® CR-6100 part

To design parts for fabrication, we will need the dimensions of the mating hardware. While many wear parts have a simple O.D., I.D., and Length profile, some parts have additional features for which we will want the dimensions:

  • Some pump wear rings have profiles like an “L”, “T”, or “Z”. In those situations, we need to know each of the diameters and widths of any of the “shoulders” or “ribs” of the parts
  • Is the pump axially or radially split?
  • Are any of the parts are axially split?
  • For vertical pump shaft bearings, it will be helpful to know if there is any groove profile required-spiral grooves, axial grooves, how many, what diameter, how deep…
  • What is the existing material and clearance of the vertical pump shaft bearings?

Process Conditions

Vespel® CR-6100 works in most process services. It is manufactured from Teflon™ PFA and carbon fibers, so it is chemically resistant to nearly all process chemicals and it has a broad temperature range. There are only two general limitations:

  • Temperature range is cryogenic -300 F (-200 C) to 500 F (260 C)
  • Avoid abrasive slurries, slops, and bottoms services

To design the parts, the pump operating temperature is required in order to determine the correct press fit for the Vespel® CR-6100 parts.

 

Differential Pressure

If the components are going into a high-energy pump, such as a multi-stage horizontal charge pump or boiler feed water pump, we recommend that the patent-pending Boulden PERF-Seal™ design be used on all horizontal multi-stage pumps. The PERF-Seal™ design is fabricated from Vespel® CR-6100 and increases the efficiency gain and rotor damping associated with the upgrade. If the PERF-Seal™ is not used, we will need to know the differential pressure across the components in order to verify that they are designed correctly.

 

Figure 2: PERF-Seal center bushing from a boiler feed water pump

Conclusions

In the ideal situation, you can supply the dimensions of the parts required, the pump cross-sectional drawing, and the API data sheet for the pump. From this information, we can confirm that the service is a good fit for Vespel® CR-6100, quote the material or machined parts required, and make a recommendation on how to install Vespel® CR-6100 into the pump.

Please feel free to contact Boulden with your application details and dimensions. We’ll be happy to provide a budget estimate or a fixed quote depending on the information available. Once you decide to go forward with the upgrade, we have whatever material you need in stock in the USA, Europe, and Singapore.

Todays Photo

Petronas Towers, Kuala Lumpur, Malaysia

Helpful Links:

Standard Stock Sizes of Vespel® CR-6100

Vespel® CR-6100 Product Data Sheet

Vespel® CR-6100 Machining Guide

3MW Boiler Feed Pump Case Study

If you need any material or have any questions. Please contact us today. Until next time.

Contact Us Today To Learn More About Vespel and Boulden Company!

 

 

Upgrade to DuPont™ Vespel® CR-6100: 100%

Upgrading pumps with composite wear componentsThere is great satisfaction in doing a job all the way.

100%

In South Africa, when you make a statement that someone agrees with, they say “100 %”–similar to how other English speakers say “absolutely.” With that in mind, we want the pumps upgraded to Vespel® CR-6100 to be upgraded 100% whenever possible.

 

Review

 

When you upgrade your pumps to Vespel® CR-6100, there are two steps:

  • Eliminate the metal-to-metal contact points in the pump
  • Reduce the running clearance (of wear rings, center bushings, and throttle bushings)

Upgrading your pumps to Vespel CR-6100 Step #1

Our recommendation when upgrading to Vespel® CR-6100 is to convert all of the stationary wear parts to Vespel® CR-6100. All of the rotating parts remain metal, thus eliminating all of the metal-to-metal contact points in the pump. This essentially eliminates the risk of pump seizure.

 

Yet, once in a while, customers try to make a small change instead of fully upgrading the pump. The three partial upgrades we run into are:

Overhung Pumps

Older pumps with long slender shafts (high L/D ratios) create problems for mechanical seals due to excessive shaft deflection. If you want to increase the rotor stability of these pumps using the wear parts, you will want to upgrade the wear rings to Vespel® CR-6100 and reduce the clearance.

 

The reason is that the Lomakin Effect-the hydraulic force which stabilizes the rotor-is driven by differential pressure and the surface speed at the differential pressure interface. Wear rings have significant differential pressure and high velocity, creating a lot of stability from the Lomakin Effect. Throat bushings? Not so much.

 

Horizontal Multi-Stage Pumps

If a horizontal multi-stage pump like a boiler feed water pump seizes, it will usually occur at the center bushing or throttle bushing, depending on the pump type. These two components generally have the tightest clearance in the pump and will be the first points of contact. In these services, there is a temptation to only upgrade the one or two components which seized.

 

While this approach has been successful in reducing pump seizures, there are some limitations. Metal-to-metal contact points remain and thus there is still a possibility of seizure. If all of the wear parts are upgraded, the risk of seizure is essentially eliminated. Furthermore, the wear rings also add to the rotor stability and efficiency of these pumps. Upgrading the wear rings as well as the center and throttle bushings will make for a much better pump. Especially if you use the Boulden PERF-Seal™ design (patent-pending).

Two-stage kerosene pump with all the components upgrade to Vespel® CR-6100 and the PERF-Seal™ design

 

 

Center Bushing of a 2-stage pump.

 

Vertically Suspended Pumps

Vespel® CR-6100 is a great material for vertically suspended pump shaft bearings in LPG, butane, natural gas liquids (NGL), and other flashing products. It can survive running dry at start up with limited wear. It doesn’t break like a carbon part. This application for Vespel® CR-6100 is so common that Boulden carries a huge inventory of standard stock sizes for the dimensions typically used for shaft bearings.

 

What some users miss is the opportunity to also upgrade the case rings of these pumps and reduce the clearance. This addition to the upgrade eliminates the other potential seizing points in the pump. Furthermore, reducing the clearance increase the pump efficiency and reduces the NPSHR–all of this making the pump easier to operate.

 

In Summary

The only partial upgrade above which we do not recommend is trying to stabilize a rotor with a throat bushing. In our experience, this approach is marginally successful at best. The other partial upgrades have worked and there are situations where they are necessary. But, given the choice, why not do the job 100%?

 

The main point is to recognize that the maximum improvement in reliability, safety, and efficiency will be achieved if you upgrade all of the wear parts (Table 1) in your pump to Vespel® CR-6100.

Table 1: Components to upgrade to Vespel® CR-6100

Overhung Pumps Between Bearings Pumps Vertically Suspended Pumps
Case Wear Rings Case Wear Rings Case Wear Rings
Throat Bushings Throat Bushings Throat Bushings
Inter-Stage Bushings Line-shaft bearings  
Center-Stage Bushings Bowl bearings  
Throttle Bushings Bottom bushings

Contact Boulden Today for your Vespel® CR-6100 Needs!

If you have a pump operating at less than 500 F (260 C) where you want to improve the reliability or efficiency, contact Boulden today. We can provide you all of the details required for your upgrade and have the Vespel® CR-6100 material required for the upgrade in stock in a wide range of sizes available for immediate delivery.

 

Helpful Links:

Standard Stock Sizes of Vespel® CR-6100

Boulden Installation Guide for Vespel® CR-6100

Vespel® CR-6100 Product Data Sheet

Vespel® CR-6100 Machining Guide

3MW Boiler Feed Pump Case Study

 

Stay Connected

7 Rules for Using Vespel® CR-6100

Upgrading pumps with composite wear componentsWe just completed our series on upgrading pumps with DuPont™ Vespel® CR-6100, getting into details on how to upgrade various horizontal and vertical pump types. We discussed reducing the clearance of the wear rings, upgrading throttle bushings with the PERF-Seal design, and upgrading vertically suspended pump shaft bearings.

Today, let’s try to condense it all down into a short list of guidelines which we can apply to just about any pump. Follow these rules and we can ensure we are using Vespel® CR-6100 properly and improving our pump reliability.

7 Rules for Using DuPont™ Vespel® CR-6100 

  • Stay under the temperature limit of 500 F (260 C)
  • Only stationary parts, mounted in compression
  • Shoulder on the low pressure side to retain the part against differential pressure
  • Avoid extremely abrasive services such as slurries, bottoms, or slops
  • Press fit, clearance, and axial length of part from the Boulden Installation Guide
  • Pump rotor must turn freely when the pump is assembled and ready for commissioning
  • Use PERF-Seal™ design for throttle and center bushings of multi-stage pumps

What do you think?

Did we miss anything? Contact us to let us know your ideas.

Until next time, if you have an application you would like to discuss, contact Boulden.

Need Vespel CR-6100 or other materials?

If you need material, we have a huge inventory of standard stock sizes available for immediate shipment.

For details on how to install Vespel® CR-6100 into nearly any pump type, download the Boulden Installation Guide.

Todays Photo

Borobodur, Indonesia

The Borobudur temple. The largest buddhist temple, and most visited site in Indonesia

 

Contact Us Today To Learn More About Vespel and Boulden Company!

Contact Us Today To Learn More About Vespel and Boulden Company!

 

 

 

 

 

 

gytinfb

Upgrading Pumps With Composite Wear Components Part: 10

Upgrading pumps with composite wear componentsPart 10: Vertically Suspended Pump Installation Tips

Review

We have discussed how upgrading your pumps with Vespel® CR-6100 helps to eliminate pump seizures, allowing you to reduce wear ring clearance, which improves pump efficiency and improves pump reliability by increasing the Lomakin Effect in the pump.

Quality repair and installation practices are an essential counterpart to the success of upgrading pumps with Vespel® CR-6100. This is true of all pump types–horizontal and vertical. When you are finished with the overhaul, the rotor should turn freely.

Vertically suspended pumps with their multiple fits and pilots require some additional consideration. To ensure the best possible results in these pumps, below are some tips which have been passed on to us from our customers.

Vespel CR-6100 for LPG Pumps

Vertically suspended LPG pumps fitted with Vespel® CR-6100.

 

Mechanical Alignment of Pump Components

Multi-stage vertical pumps pose a challenge for the shop performing the overhaul because there are multiple fits and pilots. Keeping the whole pump assembly concentric and square will give you the best results with your upgrade.

Good practices should be followed from the machine shop through the final alignment in the field.

In the machine shop:

  • Ensure all pilot fits within the pump are 0.002″ (0.05 mm) or better.
  • Ensure all mating faces of assembly elements are square.
  • If possible, assemble the pump in a vertical position.
  • Install Vespel® CR-6100 shaft bearings, bowl bearings, and wear rings, then final machine with the lathe indexed to the pilot fit of the part-this will ensure all bores at wear interfaces are concentric within the assembly. (Alternatively, all wear part fits can be machined concentric to the pilot fits prior to the installation of the Vespel® CR-6100 components.)
  • Install the Vespel® CR-6100 shaft bearings with the same clearance as the original design for the pump. If the original clearance is not available, See Table 3a (imperial) or 3b (metric) in the Boulden Installation Guide for recommended minimum clearances for vertically suspended pump shaft bearings.
  • When the assembly is complete, make sure the rotor turns freely within the pump with no hard rubs. If there are hard rubs, disassemble, try to find the source of the rub and correct the concentricity of the misaligned component. If clearances are very tight, consider a slight increase of the bushing clearance and re-check to make sure there is no hard rub.
  • Our recommended clearance for Vespel® CR-6100 wear rings in vertically suspended pumps is the shaft bushing clearance plus 0.002″ (0.05 mm) or 50% of the API minimum clearance for metal parts-whichever is larger.
  • If the pump is operating in very cold liquid (temperature below 0 C), increase the clearance at the shaft bearings by 0.002″ (0.05 mm) above the minimum values shown in table 3a or 3b.

In the field:

Generally, vertically suspended pumps incorporate a rigid coupling and the pump does not have its own rolling element bearings. The purpose of the rigid coupling is to make the pump shaft and motor shaft act as one unit with the pump relying upon the rolling element bearings in the motor. When dealing with a rigidly coupled vertical pump, traditional alignment methods can introduce misalignment. You also cannot rely upon the register fits from the motor to motor mount to the pump to be concentric.

Here are some tips for aligning a vertical pump with line shaft bushings and no rolling element bearings. (The motor bearings carry the axial load and coupling is rigid)

  • The pump must hang as close to plumb (vertical) as possible. This requires inspection of the base plate at the sump to ensure it is flat and level, and inspection of the mounting plate on the pump to ensure it is also flat and square to the assembly. If the pump is hanging “at an angle” the shaft will bend as it tries to hang plumb and pump life can be reduced.
  • Install the pump without the seal installed
  • Verify that the pump is level on the base
  • Install the motor on the pump.
  • Mount a dial indicator on the motor shaft, reading the ID and face of the seal chamber
  • Correct any radial misalignment by moving the motor and/or motor mounts in their fits. Squareness should be corrected by machining mounting faces (shims are sometimes used).
  • Lock the motor in position (installing 2 dowel pins is a proven method).
  • At this point, you may want to couple the pump and check for any run-out.
    • Any run-out that shows up after the alignment is likely due to a fault in the coupling
    • If resistance is still encountered after alignment and run-out are corrected, the source of rubbing is likely eccentric pump internals, which will need to be corrected back in the shop.
  • Install the seal (if the motor must be removed to install the seal, care must be taken to ensure motor returns to aligned position)
  • Install the rigid coupling (Coupling should be dimensionally checked and checked for trueness in the lathe before installation)
  • Measure the shaft run out between the coupling and the seal. This should be as close to zero as possible. The purpose of the rigid coupling is to make one shaft out of the driver and driven shafts. The end of the motor shaft is the zero point, so just a small run out at 15 cm below the coupling translates into huge side loads on the shaft bushings 1-2 meters down the assembly.

Side note: if you experience misalignment of the rigid coupling, the evidence will likely be wear of the bushing and/or shaft concentrated at the top bushing in the pump.

If you have anything to add to the above notes, please contact us. We’d love to hear your thoughts.

Conclusion

We hope you have found this series on how to upgrade your pumps with Vespel® CR-6100 helpful. In future weeks, we’ll have a couple of bonus sections on special topics. Until then, if you need any Vespel® CR-6100, contact Boulden. We have whatever size and quantity you need in stock and ready for immediate delivery.

For information on how to install Vespel® CR-6100 into nearly any centrifugal pump type, download the Boulden Installation Guide.

The Sydney Opera House , just out of frame is the Sydney Harbor Bridge

The Sydney Opera House, just out of frame is the Sydney Harbor Bridge

 

Contact Us Today To Learn More About Vespel and Boulden Company!

Contact Us Today To Learn More About Vespel and Boulden Company!

 

 

 

 

 

 

 

 

 

 

 

 

ytfbing

Upgrading Pumps With Composite Wear Components Part: 9

Upgrading pumps with composite wear componentsPart 9: Vertically Suspended Pumps with Separate Discharge (API Type VS4)

Review

Last week, we looked at vertically suspended pumps with the discharge through the column. This week, we take a look at vertically suspended pumps with a separate discharge (API Type VS4).

Vertically suspended pumps with separate discharge are generally used for sump pumps or wastewater pumps. It seems that these pumps cause headaches at most plants. The shaft bushings wear out leading to chronic repairs. Over the years, Vespel® CR-6100 has been used in a lot of these pumps, sometimes the pump life has been extended from a few months to several years; sometimes the pump life has not improved. Therefore, it is important to identify the failure mode before making the upgrade. We have used our experience to create the roadmap below.

Define the Service

The first step is to clarify “sump pump” or “waste water pump”, which are generic terms encompassing a wide range of services. Some services are pumping primarily chemicals mixed with water, and some of them are pumping primarily water mixed with dirt. Some of the sumps are so dirty, that the pump suction strainer seems to be immersed in mud. Another variable is that the shaft bearings are flushed with different arrangements. Some of them are flushed with the process fluid, others with clean water, and others are greased.

Given the range of service conditions, there are several different problems which can cause the shaft bearings to fail. However, there are some commonalities. First, by design, the shaft bearings are along the column of the pump with a separate discharge for the process fluid. The bearings can run dry at start-up until the flushing fluid arrives. Sometimes, the external water flush is turned off; sometimes the flush lines from the process fluid are plugged; sometimes the grease supply runs out. In a chemical sump, the mix of chemicals can cause corrosion with metal wear parts. Finally, in very dirty sumps where the bearings are flushed with the process fluid, abrasive wear tends to be the main problem.

The Road Map

Considering the above, we have created the following table to guide your selection of where to use Vespel® CR-6100 in sump pump services:

Vespel CR-6100 sump pump services.

Vespel CR-6100 sump pump services.

*Some of the alternatives to consider are switching to a clean water flush or looking at an abrasive resistant, non-seizing combination for the shaft bushings and sleeve. This generally entails a hardened sleeve and an abrasive resistant bushing material. If you have any doubts about whether Vespel® CR-6100 is a good fit for your service, contact Boulden to discuss.

Vertical Pump Conclusion

To finish our discussion of vertically suspended pumps, we will talk about assembly and installation issues which impact pump reliability. Until then, use the above information as a guide on how to use Vespel® CR-6100 in your pumps with a separate discharge. If you need any material, contact Boulden. We have whatever size and quantity you need in stock and ready for immediate delivery.

For information on how to install Vespel® CR-6100 into nearly any centrifugal pump type, download the Boulden Installation Guide.

Contact Us Today To Learn More About Vespel and Boulden Company!

Contact Us Today To Learn More About Vespel and Boulden Company!

fbintw

ytg

Today’s Photo

Late Night Snack, Thailand

Late Night Snack, Thailand

 

 

 

 

 

 

 

Boulden Company

Conshohocken, PA, USA

1-610-825-1515

 

Boulden International, S.ar.L

Ellange, Luxembourg

+352 26 39 33 99

Upgrading Pumps With Composite Wear Components Part: 8

Upgrading pumps with composite wear components

Part 8: Vertically Suspended Pumps (API Types VS1–3, VS6, VS7)

Review

To date, we have addressed how to install DuPont™ Vespel® CR-6100 into the various horizontal pump types to eliminate metal-to-metal contact points in the pump and minimize the risk of pump seizure. This allows a reduction of clearance which improves efficiency and rotor stability.

This segment will discuss how to use Vespel® CR-6100 in vertically suspended pump types (API types VS1-VS7). These types can be further broken down as “discharge through column” (VS1, VS2, VS3, VS6, VS7) and “separate discharge” (VS4 and VS5).

Which Parts?

In vertically suspended pumps, we can upgrade the same components as horizontal pumps (wear ringsthrottle bushingsthroat bushings) for the same reasons-to eliminate the metal-to-metal contact areas in the pump and reduce the clearance resulting in improved reliability and efficiency.

Today we will focus on the components which are unique to vertically suspended pumps-the vertical pump shaft bearings: line shaft bearings, bowl bearings, and bottom bearings. Vespel® CR-6100 is ideally suited to this application, particularly in services which suffer from a lack of lubricity or may run dry at startup. Vespel® CR-6100 does not seize like metal alloys, it can survive running dry, and it can withstand mechanical impacts and thermal shocks so it doesn’t break like carbon or graphite.

Multi-stage LPG pump bowl assemblies being upgraded to Vespel® CR-6100.

Multi-stage LPG pump bowl assemblies being upgraded to Vespel® CR-6100.

One thing of note is that vertical pump shaft bearings do not have differential pressure across the parts, therefore, they do not impact pump efficiency. Because the clearance of these components tends to be rather tight, to begin with, a further reduction in clearance can easily lead to assembly issues with a limited upside associated with the tighter clearance. Therefore, our recommendation for these parts is to install the Vespel® CR-6100 into the spiders or bowl assemblies with the press fit shown in our installation guide, then final machine to the original design clearance.

In our installation guide, you will find two clearance charts–one for horizontal pump types, one for vertical pump types. Because we don’t want the wear ring clearance tighter than the shaft bushing clearance, we simply recommend making the wear ring clearance 0.002″ (0.05 mm) larger than the shaft bushing clearance in these pumps. In short, we highly recommend that you download the Boulden Installation Guide for Vespel® CR-6100.

Discharge Through Column

Vertically suspended pumps are often selected because the service offers poor suction conditions such as light hydrocarbon service or condensate. In a long-term study, a refinery upgraded 22 vertical pumps to Vespel® CR-6100 wear parts. The pumps were operating in light hydrocarbons, flare knockout drum, and several stop/start services like product transfer. In the 5 years prior to upgrading the pumps, this population of pumps comprised many “bad actors” with poor reliability. In the 5 years after upgrading the pumps to Vespel® CR-6100, there were only 8 repairs on the entire population of pumps and the MTBR of this group of pumps increased to more than 10 years!

The combination of excellent reliability with ease of machining and installation along with immediate stock availability has made Vespel® CR-6100 the material of choice in these applications.

Vertically suspended pumps assembled with Vespel®CR-6100 shaft bearings, wear rings, bowl bushings and bottom bearings

Vertically suspended pumps assembled with Vespel®CR-6100 shaft bearings, wear rings, bowl bushings, and bottom bearings

Vespel® CR-6100 can handle significant periods of dry running with minimal wear, making it easier to bring the pump online. When you upgrade your wear rings to Vespel® CR-6100 and reduce the clearance, you might also find the pump easier to start due to a reduction in the NPSHR (Net Positive Suction Head Required).

To be continued…

In the next two issues, we will address vertically suspended pumps with a separate discharge (API Type VS4) and then we will discuss installation and assembly issues unique to vertically suspended pumps.

Until then, if you have a vertical pump which is giving you headaches, consider upgrading the wear parts to Vespel® CR-6100. Contact us today. We have the Vespel® CR-6100 in stock in a wide range of sizes available for immediate delivery to nearly anywhere in the world.
For details on installing Vespel® CR-6100 into nearly any centrifugal pump type, download the Boulden Installation Guide.

Contact Us Today To Learn More About Vespel and Boulden Company!

Contact Us Today To Learn More About Vespel and Boulden Company!

 

 

 

 

 

fb

tw

yt

Boulden on Google+

 

Today’s Photo

Gardens by the Bay, Singapore

Gardens by the Bay, Singapore

Upgrading Pumps With Composite Wear Components Part: 7

Upgrading pumps with composite wear componentsPart 7: Between Bearings, Radially Split Pumps (API Types BB2, BB4, and BB5)

Review

DuPont™ Vespel® CR-6100 is a composite material which is used for the stationary wear parts of your pump and can be used in nearly all process chemicals from cryogenic temperatures to 500 F (260 C).

The upgrade to Vespel® CR-6100 wear parts involves two steps: eliminate the metal-to-metal contact points in the pump to minimize the risk of pump seizure, then reduce clearance to improve reliability and increase efficiency.

Radially Split Pumps

Today, we cover the details on using Vespel® CR-6100 to upgrade your between-bearings, radially-split pumps. The components we want to upgrade in these pumps are the case rings, throttle bushing, and throat bushings.

Single and two-stage BB2 style pumps are widely used in refining and petrochemical applications featuring higher temperatures and low NPSH available. Upgrading the wear rings (and inter-stage bushing in two-stage designs) with Vespel® CR-6100 and reduced clearance will help maintain rotor stability, improve efficiency, and reduce the pump NPSHR.

Multi-stage BB4 and BB5 designs are used in several ideal applications for Vespel® CR-6100: unit charge pumps in refinery, petrochemical, and gas processing along with boiler feed water in many different industries. Upgrading the wear rings and throttle bushings of these pumps with Vespel® CR-6100 and reducing the clearance can produce significant efficiency gains of 4-6%. Higher efficiency translates to either lower operating cost as your pump uses less energy to produce the same flow, or increased throughput which can pay for the upgrade in a matter of days

Wear Rings

The key point in upgrading the wear rings in these designs is to ensure the Vespel® CR-6100 is retained against differential pressure. In many designs, the original case wear rings are manufactured with an “L” shaped profile as shown in Figure 1. This shape of this design will, in most cases, retain the rings against differential pressure. You only need to modify the original design to incorporate the press fit required for Vespel® CR-6100 and then final machine the rings after they are pressed into the diffusers.

Vespel® CR-6100 case rings for a hydrocracker charge pump

Vespel® CR-6100 case rings for a hydrocracker charge pump

 

In some pumps, however, the case rings go straight across the diffusers. When they are metal rings, they are usually welded in place. To replace these designs with Vespel® CR-6100, you may need to modify the diffusers to incorporate an “L” shaped profile, or design another method of retaining the components against differential pressure. If you have any questions, contact Boulden with the pump cross sectional drawing and we can help.

Throttle Bushings (aka Balance Drums)

The throttle bushings of BB4 and BB5 pump types can be exposed to high differential pressures. For these components, Boulden has developed a patent-pending design called the PERF-Seal™ which improves the performance and dramatically increases the differential pressure capability of composite materials used in this position.

Boulden recommends the PERF-Seal™ design for all throttle bushings in BB4 and BB5 pumps. Contact us and we can either supply machined parts or provide drawings for you to manufacture the components in your shop for the upgrade.

To be continued…

Our final look at specific pump types will feature vertically suspended pumps. After that, we will cover a few specific topics and wrap up this series.

Until then, if you have a radially split pump where you would like to improve the reliability or efficiency, contact Boulden today. We can provide you all of the details required for your upgrade and have the Vespel® CR-6100 in stock in a wide range of sizes available for immediate delivery.
For details on installing Vespel® CR-6100 into nearly any centrifugal pump type, download the Boulden Installation Guide.

Contact Us Today To Learn More About Vespel and Boulden Company!

Contact Us Today To Learn More About Vespel and Boulden Company!