Tag Archives: Vespel Case Study

Case Study: Repeat Failures of Boiler Feed Water Pumps

Vespel®CR-6100 centrifugal pump components

Boiler Feed Pump Seizing Problems

The low lubricity of boiler feed water along with operational challenges can lead to pump seizures. How do you avoid the problem? Or, if it happens, what is the best way to solve the problem? This case study is about repeat seizures of two, new, 1.2 MW boiler feed water pumps operating in a refinery. The pumps were fitted with metal wear parts, ran at 2980 rpm, and experienced failures immediately after commissioning.

The Tale of the Terrible Boiler Feed Pumps

Here is a brief summary of the problems this site faced with their boiler feed pumps:
  1. The first failure was due to pump seizure, the original failure analysis suggested the pumps failed due to sand or debris lodging into the close clearance between rotating and stationary wear parts. The filters on the suction strainer were changed to a finer mesh to limit particle size which could enter the pump.
  2. Soon after, one of the pumps seized again–this time, the metal parts had galled before start up and the pump could not be rotated by hand. The clearances at the wear rings, center bushing, and throttle bushing were increased.
  3. The pumps seized again.
  4. Repeated start-up attempts against seized pumps had also damaged the pump motors.

The failure analysis led the engineers to re-check the entire design and installation of thepumps:

  • Re-checking the design basis of the pumps
  • Re-checking the materials of construction
  • Re-checking assembly and rotor run-out
  • Re-balancing the rotor
  • Performing a new pump rotordynamic analysis
  • Verifying soundness of foundation and that pipe strain within limits
  • Evaluation of operational practices and function of the minimum control valve

Minimum Flow Valve Problem

Ultimately, the site realized the minimum flow valve was not functioning properly, leading to low flow rates at start up. The low flow rates caused localized flashing inside the pump and the metal parts would seize.

Their corrective action was to change the minimum flow valve, increase the clearance at the center bushing, throttle bushing, and wear rings, and “upgrade” to a “non-seizing” metal alloy. Because they increased the clearance at all of the internal parts, they ran a new rotor dynamic analysis to verify that the rotor would remain stable.

How Much Did It Cost?

Between repeated pump repairs, motor overhauls, engineering resources to troubleshoot and re-verify the design, the problem undoubtedly cost hundreds of thousands of dollars. If start up was delayed or the site lost production, the losses were probably in the millions.
The solution was also extremely expensive. The clearance at the pump wear parts was permanently increased. We’ll generously assume the increased clearance resulted in a 2% efficiency loss. Assuming a power price of $0.12/kw-hr, this loss of efficiency will cost about $50,000/year. Over the life of the pumps, the site will lose another million dollars or more!

Avoid Pump Seizure By Using Vespel® CR-6100

If the site had specified Vespel® CR-6100 wear parts when the pump was ordered, the pump would not have seized. Most likely, the pumps would have made it through the low flow transients without issue and all of the efforts above could have been avoided. The motors would not have been damaged, and they would not have had to increase the internal clearances. Even after the first seizure occurred, they could have easily converted to Vespel® CR-6100 and saved time, effort, and cost. The small adder to specify Vespel® CR-6100 would have saved several hundred thousand dollars at a minimum.

Furthermore, because Vespel® CR-6100 does not seize, clearance at the wear rings, center bushing, and throttle bushing could have been reduced, resulting in an efficiency gain instead of an efficiency loss. So, instead of losing $50,000 per year in operating costs, the site could have saved at least $50,000 per year–a net $100,000 annual savings from using Vespel® CR-6100. Combined with the Boulden PERF-Seal® design, the pump would be more reliable, easier to operate, and more efficient than a pump with metal parts and increased clearance.

Conclusion

If you are buying or overhauling a boiler feed water pump, specify Vespel®CR-6100 for all of the stationary wear parts (the rotating parts will remain metal). You’ll have a better pump that is easier to operate with a lower life cycle cost due to higher efficiency. If you have an existing pump that seizes, contact Boulden today. We can help you solve this problem in just about any pump service.

If you simply have an urgent repair and need a great material fast, we have a large inventory of material in stock and can supply raw material or machined parts with very short lead times. If you have dimensions, quantities, and basic service conditions, simply request a quote. We’re here to help you!

Solving Vertically Suspended Barrel Pump Failures

Between 2011 and early 2012, a refinery suffered repeat failures of a pair of vertical pumps. Looking at the cross section, you can see this is not an ordinary pump. It is essentially a BB5 multi-stage diffuser pump mounted vertically.
The pumping conditions are also uncommon–0.61 specific gravity hydrocarbon running at 300 F (149 C). The vapor pressure is nearly 50 psi (3.3 bar), well into the range of a flashing hydrocarbon.
In short, not an easy application–a vertically mounted, multi-stage, barrel pump in a hot, light, flashing, low viscosity hydrocarbon.
Vertically Suspended Barrel Pump

Vertically Suspended Barrel Pump

 

 

Repeat Pump Failures

The pumps were failing due to seizure of the original metal parts, which were 12% chrome alloy with a hardness difference. At the point where the refinery contacted Boulden, the pumps had failed several times in the previous year.

The Upgrade

The engineers at the plant had heard that Vespel® CR-6100 wear parts would not seize. They discussed with Boulden that the material could handle the service conditions. The temperature limit for Vespel® CR-6100 is 500 F (260 C) and it resists all hydrocarbons without issue, so this application was well within the capabilities of Vespel® CR-6100. After several failures with the metal parts, the refinery decided to go forward with Vespel® CR-6100.
Vespel® CR-6100 wear rings, inter-stage rings, and throttle bushings were installed. Clearance at the wear rings was reduced to approximately 50% API recommended values for metal parts. A year later, the spare pump was also upgraded.

Results of Upgrading to Vespel® CR-6100

The first pump finally came out of service in early 2021 after nearly 9 years. From the look of the components, the Vespel® CR-6100 survived some really tough conditions. There was evidence of running dry, hard contact between rotating and stationary parts, and local temperatures well over 300 F (149 C). Yet, the pump never seized, and the Vespel® CR-6100 parts remained in usable condition all the way to the end of the run.
The MTBR for these pumps went from a few months to 9 years with a simple upgrade to Vespel® CR-6100. The investment in Vespel® CR-6100 has probably paid for itself 100 times over. The pumps clearly last longer, are easier to operate, and arguably much safer because they do not seize in this hot, flashing hydrocarbon service.

Conclusion

Do you have an application more difficult than this? Tell us about it.
Take your next repair as an opportunity to upgrade your pump. Boulden has a large inventory of material in stock and we can supply raw material or finished parts with very short lead times. We can provide all of the technical support required for you or your preferred workshop to make the upgrade a success.
Whatever the temperature, chemical, or operating conditions, it is likely that Boulden has a non-seizing, non-galling composite material to help you improve your pump reliability. Contact us today with the process conditions and we will let you know what we can do.

 

Catacarb® Pump Case Study

A single installation of Vespel® CR-6100 saved a lot of money and troubles.

Several years ago, a refinery upgraded a Catacarb® pump with Vespel® CR-6100 case rings. The pump was a single-stage, between bearings, double suction pump. Catacarb® is a mixture of potassium carbonate and other chemicals which is used to strip gases such as CO2 and H2S from hydrocarbon streams.

For two years after the installation, the pump ran perfectly, and no one thought about the Vespel® CR-6100 wear rings in the pump.

 

Then, one day…

One day, the Operators heard one of the Catacarb® pumps making a loud pounding sound. They shut it down and switched to the spare. The noisy pump stopped without issue. The pump did not seize, the seals did not leak, and there was no release of the process to the atmosphere.

When the pump arrived in the shop, the Maintenance crew found the problem. A piece of metal had broken from an upstream valve, lodged itself in the impeller and proceeded to pound against the pump volute. The impeller suffered substantial damage shown in Figure 1:

Damaged Impeller

Figure 1: Impeller damaged by a piece of metal lodged in the pump

Disassembly revealed that the pump had been fitted with Vespel® CR-6100 case rings. The rings showed signs of contact and perhaps a negligible amount of wear, but remained in working condition as shown in Figure 2:

Vespel CR-6100 Case wear ring

Figure 2: Vespel® CR-6100 case wear ring after the incident

 

Conclusion

According to the refinery Maintenance team, without the Vespel® CR-6100, the pump would have likely seized, causing severe damage to the pump, along with the potential for seal failure and leakage of the process to the atmosphere. Instead, the plant continued to run. How much money did they save? How much trouble did they avoid? Fortunately, no one will ever know. Because the pump did not seize, the only cost was a standard repair plus a new impeller.

If you want to help your pumps avoid seizure, contact Boulden today. We have Vespel® CR-6100 in stock in a wide range of sizes in the USA, Europe, and Singapore and we can assist with any application or design questions you have. If you know what you need, just request a quote.

Until next time, Merry Christmas, enjoy the holidays and be safe.

 

Helpful Links:

Standard Stock Sizes of Vespel® CR-6100

Vespel® CR-6100 Product Data Sheet

Vespel® CR-6100 Machining Guide

3MW Boiler Feed Pump Case Study
Today’s Photo

Marché de Noël, Strasbourg, France

Marché de Noël, Strasbourg, France

 

 

 

 

Contact Us Today To Learn More About Vespel and Boulden Company!

 

 

 

 

 

 

 

 

Reformer Feed Pump Case Study

A long-term success story

Almost 10 years ago, a refinery in Europe upgraded their Reformer Feed pumps to DuPont™ Vespel® CR-6100. Last month, we checked in to see how the pumps are running.

The Application

The Reformer Feed pumps are 10-stage, axially-split, between-bearings pumps (API Type BB3), running at 2950 RPM. The product is naphtha at 185 C (365 F). There is one pump in the service, plus a spare rotor in the warehouse.

Problems in the Past

Marginal suction conditions make this a very tough service. The pumps take suction from a stabilizer tower bottom with NPSHA of only about 3 meters (10 feet). Due to the low NPSHA, it is very easy for the fluid to vaporize in the pump during start-up, causing the pump to run dry. This was formerly the normal reason for repairs due to the metal wear parts galling and seizing. If the metal parts did not seize, the throttle bushing would wear out, causing seal failures at the non-drive end.

Vespel CR-6100 wear parts

Vespel CR-6100 wear parts are installed as “inserts” into the existing metal parts for axial split pumps running at elevated temperatures.

Vespel® CR-6100 Survives

In 2009, the first pump in the service was upgraded with Vespel® CR-6100 case wear rings, center bushing, and throttle bushing. By eliminating the metal-to-metal contact points in the pump, the risk of pump seizure was essentially eliminated. Once the original pump upgrade proved successful, the spare rotor was also upgraded, but it has never been installed. The original pump upgraded is still running today. The refinery engineer commented:

We know for sure the product has vaporized in the pump at least 3 times since the upgrade, with seal failures as the only damages. We haven’t exchanged the rotor yet, although we have the spare rotor upgraded in 2010 in the warehouse. So far, no one expects the rotor to be exchanged.

As an added bonus, the site notes that they achieved a significant efficiency increase with the upgrade, which allowed an increase in unit throughput of 10%.

Vespel CR-6100 Conclusion

Where the refinery suffered with multiple failures of metal parts in the past, the Reformer Feed pump has now been running nearly 10 years with Vespel® CR-6100. The upgrade has paid for itself many times over with better reliability, efficiency, and ease of operation.

If you have a service causing you headaches, or if you are looking to increase throughput on one of your feed pumps, contact Boulden today. We have Vespel® CR-6100 in stock in a wide range of sizes in the USA, Europe, and Singapore and we can assist with any application or design questions you have. If you know what you need, just request a quote. Until next time, be safe.

 

Helpful Links:

Standard Stock Sizes of Vespel® CR-6100

Vespel® CR-6100 Product Data Sheet

Vespel® CR-6100 Machining Guide

3MW Boiler Feed Pump Case Study

Today’s Photo

Moselle river between Luxembourg and Germany

Moselle River Between Luxembourg and Germany

Moselle River Between Luxembourg and Germany

Contact Us Today To Learn More About Vespel and Boulden Company!

 

 

 

 

 

 

 

 

Diesel Charge Pump Case Study

DuPont™ Vespel® CR-6100 helps the pump survive and keep pumping.

The Diesel Charge Pump

A refinery in North America experienced recurring issues with their diesel charge pumps. The pumps provide feed into the refinery HDS unit. Loss of feed to the unit can result in reduced refinery production and significant losses.

The refinery has 3 total pumps in this service–two pumps running in parallel with an installed spare. The pumps are 1200 HP (900 kW), 13-stage, axially-split, between-bearings pumps (API Type BB3), running at 3550 RPM. The product is diesel fuel at approximately 250 F (120 C).

The original design of these pumps included metal wear rings, throttle, and center bushings. During the previous process upsets, these metal wear parts had seized, requiring expensive pump overhauls. The overhauls required the services of an outside shop, exposing the refinery to production risk due to operating without a spare pump for several weeks.

 

Vespel® CR-6100 is Put to the Test

Earlier this year, the refinery upgraded the first of the three pumps to Vespel® CR-6100, using Boulden’s patented PERF-Seal design for all of the stationary wear parts. The rotating wear parts remained metal, using the original metallurgy and surface finish.

Soon after the upgrade, a process upset caused a temporary loss of flow to the pumps. Figure 1 shows the process flow data during the upset condition. Each box along the x-axis represents one hour and the y-axis represents flow rate. Without sufficient flow to the pumps (blue and cyan lines), minimum flow (yellow line) could not be immediately established, causing the pumps to run at extremely low flow rates for nearly an hour. Partial flow was re-established, but the pumps continued to operate far below the design flow rate for nearly 4 more hours.

Figure 1: Process flow data for the diesel charge pumps during the process upset

 

normal process conditions were finally restored, the pumps were individually shut down for inspection. The pump with metal wear components seized upon shut down had damage to both bearings and required significant repair work.

The pump with Vespel® CR-6100 rotated freely, with the inspection revealing some damage to the thrust bearing. The thrust bearing was replaced in the field and the pump returned to service where it ran at full rate with no evidence of reduced performance or vibration issues.

 

Conclusion

In an ideal world, plant processes always operate per design. Unfortunately, there are times when things do not go as planned. When that happened to this refinery, the pump with Vespel® CR-6100 survived where the pumps with metal components could not.

Beyond surviving this incident, the refinery also reports that the pump is running with lower vibration than the pumps with metal components. With reduced clearance at the wear parts, the pump is almost certainly consuming less power, further reducing the life cycle cost of the pump.

If you have a service causing any issues at your plant, contact Boulden today. We have Vespel® CR-6100 in stock in a wide range of sizes in the USA, Europe, and Singapore and we can assist with any application or design questions you have. If you know what you need, just request a quote. Until next time, be safe.

 

Helpful Links:

Standard Stock Sizes of Vespel® CR-6100

Vespel® CR-6100 Product Data Sheet

Vespel® CR-6100 Machining Guide

3MW Boiler Feed Pump Case Study
Today’s Photo

October in the forest, Mullerthal, Luxembourg

 

14 Reasons to Reduce Wear Ring Clearance

Use DuPont™ Vespel® CR-6100 to reduce the clearance in your pumps and improve pump reliability and efficiency.

Vespel CR-6100 Review

A couple weeks ago, we looked at all of the negative consequences from increasing the wear part clearance in you pumps: wear rings, inter-stage rings, throttle bushings, and center bushings. In the past, increasing the clearance was a typical response to pump seizure.

Now, there is a better way to address the issue and make your pump more reliable and efficient at the same time. Instead of increasing the clearance of the metal parts, replace the stationary wear parts with non-seizing, non-galling Vespel® CR-6100 and reduce the clearance. With this simple change, all the contact points in the pump become metal-to-composite and the risk of seizure is minimized.

What if you reduce the clearance?

Because Vespel® CR-6100 is non-seizing, you can safely reduce the clearance at the wear parts in your pumps. Even if the pump runs dry, Vespel® CR-6100 will not seize like metal components.

 

 

When you reduce the clearance at your wear parts, essentially every aspect of the pump hydraulic performance improves. Reduced clearance also tends to produce lower vibration levels. In short, the pump will likely be easier to operate, more reliable, and consume less power.

 

14 Benefits of Reduced Clearance using Vespel CR-6100 

 

Hydraulic Benefits Mechanical Benefits
Higher head Increased rotor stiffness
Higher flow–higher potential maximum flow rate Potentially lower vibration
Increased efficiency–reduced power consumption Potentially reduced shaft deflection
Lower NPSHR–lower risk of cavitation Reduced risk of shaft breakage
Reduced motor load Potentially longer seal life
Steam turbine drivers can run at lower speeds Potentially longer bearing life
Reduced need to run pumps in parallel Reduced potential for motor tripping or over-heating

 

The PERF-Seal™

The benefits of reducing the clearance can be augmented using the patented Boulden PERF-Seal™ design. The design is simple to implement, increases the potential efficiency gain from the upgrade, adds a significant amount of hydraulic damping, and generally amplifies the benefits of your upgrade to Vespel® CR-6100. Contact Boulden for details.

Two-stage product shipping pump upgraded with the PERF-SEAL deign

The Poster Pump, continued…

Two weeks ago, we wrote about an 11-stage horizontal pump which had seized several times. Each time it seized, the wear part clearance was increased. After the clearance had been increased multiple times, the pump would vibrate beyond alarm limits and the pump was no longer operable.

The plant upgraded the pump with Vespel® CR-6100 case rings, center bushing, and throttle bushing, using the Boulden PERF-Seal™ design. They subsequently reduced the clearance to less than the original design clearance. After the upgrade, the pump ran without seizing, very low vibration, and a significant efficiency gain.

 

Conclusion

What do you think of our list of benefits from reduced clearance? Is there anything we should add? Anything you disagree with? Let us know your ideas. We will be happy to hear from you.

 

Until next time, if you have a pump in your shop which can benefit from an upgrade to Vespel® CR-6100 and reduced clearance, contact Boulden. We can answer your questions and we have material in stock and available for immediate shipment.

 

Helpful Links:

Standard Stock Sizes of Vespel® CR-6100

Vespel® CR-6100 Product Data Sheet

Vespel® CR-6100 Machining Guide

3MW Boiler Feed Pump Case Study

Today’s Photo

Place Stanislas is considered to be one of, if not the most beautiful royal squares in Europe. It was added to UNESCO’s World Heritage List in 1983.

Contact Us Today To Learn More About Vespel and Boulden Company!

 

 

14 Reasons to Avoid Increased Wear Ring Clearance

If you increase the clearance, the long-term reliability and efficiency of the pump will suffer.

Happy Summer!

We hope you have had a chance to enjoy your summer holidays. From New Orleans to Narvik, it’s hot out there, so be safe, and wear sunscreen.

In our messages, we frequently highlight how Vespel® CR-6100 does not seize and therefore allows you to reduce the clearance at the wear parts in your pumps: wear rings, inter-stage rings, throttle bushings, and center bushings.

Today we want to look at things from another perspective–negative effects which can happen to your pump when you increase the clearance at the wear parts.

 

What can happen when you increase clearance?

If a process plant has a problem with a pump seizing during operation or galling during commissioning, the traditional response has been to increase the clearance at the wear parts.

Metal Case Ring After a Boiler Feed Pump Seizure

 

Although increasing the clearance might make the pump operable in the short term, there are several negative consequences from increased clearance.

Hydraulic Effects Mechanical Effects
Lower head Reduced rotor stability
Lower flow Potentially higher vibration
Lower efficiency–increased power consumption Potentially higher shaft deflection
Higher NPSHR–greater risk of cavitation Increased risk of shaft breakage
Higher motor load Potentially shorter seal life
Need to run steam turbines at higher speed Potentially shorter bearing life
Higher likelihood of needing to run pumps in parallel Higher risk of motor over-heating or tripping from excessive load

So, while you don’t want your pumps to seize, increasing the clearance can create some major issues. At a minimum increased clearance drives up the operating cost of the pump and likely compromises the long term reliability of the machine.

 

The Poster Pump

A while back, one of our clients had an 11-stage horizontal pump which was originally supplied with metal wear components. The pump seized soon after start-up, and the recommendation from the OEM was to increase the clearance. The pump seized again. The second recommendation was to use a “non-galling” metal alloy to address the problem. The pump seized again. The clearance was increased one more time. When the pump was started again, the overall pump vibration levels were beyond alarm limits. The multiple increases in clearance had resulted in a loss of rotor stability to the point that the pump was no longer operable.

The end of the story will be in our next email…

 

Conclusion

Until next time, if you have a pump in your shop which has galled or seized, contact Boulden to discuss an upgrade to Vespel® CR-6100. We will be happy to work through the details of the upgrade with you and we have material in stock and available for immediate shipment.

 

Helpful Links for Vespel and Pump Case Studies:

Standard Stock Sizes of Vespel® CR-6100

Vespel® CR-6100 Product Data Sheet

Vespel® CR-6100 Machining Guide

3MW Boiler Feed Pump Case Study

Today’s Photo’

Rossio Square in Lisbon Portugal with famous wave pattern stone pavement.

Contact Us Today To Learn More About Vespel and Boulden Company!

 

 

 

 

 

The Final Installation Steps: Length and Clearance

Upgrading pumps with composite wear componentsSetting the final dimensions of your DuPont™ Vespel CR-6100 component

Review

We have discussed how to measure your pump, prepare the metal parts, and establish the press fit for your Vespel® CR-6100 installation. The final two dimensions you need to establish are the part length and the clearance.

The Part Length

Vespel® CR-6100 has an extremely low coefficient of thermal expansion in the radial plane (perpendicular to rotation). This is one of the principal reasons it performs so well in centrifugal pump components. The low coefficient of thermal expansion is achieved through the use of radially-oriented, long carbon fibers.

Conversely, the coefficient of thermal expansion along the axis is relatively high. Therefore, the part length for a Vespel® CR-6100 component should account for the axial thermal expansion at operating temperature. Table 4 of our installation guide provides the details on how to make this adjustment.

Table 4 of our installation guide provides the details on how to make this adjustment.

The Clearance

The clearance for the part is set depending on the diameter and component type. Tables 2a and 2b in the installation guide show the clearance recommendations for horizontal pump components such as pump wear rings, throttle bushings, center bushings, inter-stage rings, balance bushings, and throat bushings.

Tables 2a and 2b provide recommended minimum clearance for horizontal pump components.

Tables 3a and 3b show the clearance recommendations for vertical pump components like vertical pump shaft bearings, wear rings, and throat bushings.

Tables 3a and 3b provide recommended minimum clearances for vertically suspended pump parts.

The best way to set the clearance is to press the component into place, and then final machine the bore to the desired clearance. This is shown in steps 5a-7a in our installation guide, pages 8-9.

Where final machining after the press fit is not practical, you can design the component to have the correct clearance after the press fit. For most component geometries, you can assume the Vespel® CR-6100 will reduce at a 1:1 ratio with the press fit. This method is shown in steps 5b-7b in our installation guide, page 9.

Some sites have implemented a hybrid method. They measure the inside diameter of the Vespel® CR-6100 case wear ring after installation, and then machine the metal impeller wear ring to set the desired clearance.

Conclusions

Installing Vespel® CR-6100 is an easy upgrade to make your pumps more reliable, safe, and efficient. Follow the steps in our  installation guide and you can make your pump even better than the day it was new. If you need material, Boulden carries inventory of stock sizes in the USA, Europe, and Singapore.

Until next time, please feel free to contact Boulden with your application details or to request a quote. We’ll be happy to answer any questions you might have.

 

Helpful Links:

Standard Stock Sizes of Vespel® CR-6100

Vespel® CR-6100 Product Data Sheet

Vespel® CR-6100 Machining Guide

3MW Boiler Feed Pump Case Study

Today’s Photo

Rock of Gibraltar – was one of the Pillars of Hercules and was known to the Romans as Mons Calpe.

 

Contact Us Today To Learn More About Vespel and Boulden Company! 

The Interference Fit – Setting the interference fit value for DuPont™ Vespel CR-6100

The interference fit value for DuPont™ Vespel CR-6100

Review

We have discussed how to measure your pumps and prepare the metal parts. The next step is to machine the DuPont™ Vespel® CR-6100 part to have the correct dimensions.

Remember, Vespel® CR-6100 is used for stationary wear parts like wear rings, throttle bushings, and vertical pump shaft bearings. The rotating components running against the Vespel® CR-6100 remain metal. The Vespel® CR-6100 components are installed with an interference fit (aka “press fit”).

 

Installation Guide for Vespel CR-6100

The Boulden Installation Guide for Vespel® CR-6100 Tables 1a (Imperial) and 1b (Metric) outline the interference fit values for a Vespel® CR-6100 component based on diameter and the pump operating temperature.

If you only want the right value, follow the guide. You can stop reading and contact Boulden whenever you need material or if you would like to request a quote. If you want to know how we arrived at the values, continue reading.

 

Low Coefficient of Thermal Expansion

Vespel® CR-6100 has an extremely low coefficient of thermal expansion–about 60% lower than carbon steel in the radial plane. This property is one of the reasons Vespel® CR-6100 can survive pumps running dry and avoiding seizure.

The low coefficient of thermal expansion is a main factor in the interference fit value. At elevated temperatures, the metal parts will thermally expand more than the Vespel® CR-6100 parts. Therefore, as pump operating temperature increases, the interference fit increases.

 

Vespel CR-6100 Low Modulus of Elasticity

Vespel® CR-6100 parts press in relatively easily due to a very low modulus of elasticity. Vespel® CR-6100 can be used in temperatures up to 500 F (260 C). At maximum operating temperature, the recommended interference fit can be quite high. Due to the low modulus, the material generally presses in without issue.

 

Small Pilot Fit

To facilitate the large interference fit, machine a small pilot or “step” on the leading edge (Figure 1) of the Vespel® CR-6100 component. This will help the part sit squarely in the bore as it is being pressed in (Figure 2).

Figure 1: Pilot Fit on leading edge to facilitate press fit

Figure 2: Press fit operation

No Pins or Screws Required

Once Vespel® CR-6100 is installed with a press fit and a shoulder to retain the part against differential pressure, no further retention of the components is required. There are thousands of pumps running for many years with Vespel® CR-6100 components without retaining pins or screws.

If you insist on using retaining pins with Vespel® CR-6100, contact Boulden and we will discuss the possible designs given your part geometry.

 

Conclusions

When installing Vespel® CR-6100, make sure you are using the correct interference fit. Download our installation guide for the full installation procedure. If you need material, Boulden carries inventory of stock sizes in the USA, Europe, and Singapore.

Until next time, please feel free to contact Boulden with your application details or to request a quote. We’ll be happy to answer any questions you might have.

 

Helpful Links:

Standard Stock Sizes of Vespel® CR-6100

Vespel® CR-6100 Product Data Sheet

Vespel® CR-6100 Machining Guide

3MW Boiler Feed Pump Case Study

If you need any material or have any questions. Please contact us today. Until next time.

Contact Us Today To Learn More About Vespel and Boulden Company!

 

 

 

 

Todays Photo

Grand Canyon, Arizona USA

 

Boulden Company – Conshohocken, PA, USA | 1-610-825-1515

Boulden International, S.ar.L – Ellange, Luxembourg | +352 26 39 33 99

Prepping Your Metal Parts

Prepare your pump parts for an upgrade to DuPont™ Vespel CR-6100

Review on Pump Parts and upgrading to Vespel CR-6100

The National Geographic Channel used to run a show called Doomsday Preppers where survivalist families would prepare for apocalyptic disasters and societal collapse. Although that sounds like a lot of fun, at Boulden, we are more concerned with helping your pumps survive adverse process conditions with an upgrade to DuPont™ Vespel® CR-6100.

 

Last month, we outlined the measurements required for a Vespel® CR-6100 installation. When you have decided to go forward with the upgrade, the first step will be to prepare the metal parts to facilitate the installation.

 

Start with a Little Chamfer

Vespel® CR-6100 is used for stationary wear components–throttle bushings, case wear rings, center-stage bushings, inter-stage case rings, vertical pump shaft bearings, throat bushings, agitator bearings, API separator bearings-basically any product lubricated wear part.

 

The material is installed with a significant press fit. To facilitate the press fit operation, the metal bore into which you will be pressing the Vespel® CR-6100 requires a small chamfer or radius (Figure 1). It is very important that any corners or sharp edges are fully broken and smoothed with a stone so that the metal edge does not remove material from the outside surface of the Vespel® CR-6100 during the press operation.

Figure 1: Chamfer or Radius Leading Edge to facilitate press fit. (Note shoulder on low-pressure side.)

 

 

 

 

 

 

 

 

 

Make Sure There is a “Shoulder” or “Step”

For any part exposed to differential pressure, it is important that the design features a shoulder or step at the low-pressure end (shown on the right side of Figure 1) to ensure the differential pressure does not dislodge the Vespel® CR-6100 during operation.

 

Some radially split multi-stage pumps (BB4 and BB5) pumps feature metal wear rings welded into the pump diffusers with no step or shoulder incorporated in the design. In this case, you can consider modifying the diffusers so that the case wear rings have an “L” shaped profile like the rings below which were used in a hydrocracker charge pump.

Figure 2: “L” Shaped wear ring profile for BB4 or BB5 pump type.

 

Conclusions

Vespel® CR-6100 can help you avoid pump seizure during extreme events like running dry. The temperature limit is 500 F (260 C), allowing it to survive infernal heat waves. The material is not affected by electromagnetic pulses. polar shifts, or solar flares. As an added bonus, Vespel® CR-6100 has an indefinite shelf life, making it an ideal material to stockpile in your underground bunker, and the material is likely to hold its value in the case of hyperinflation.

 

In reality, you don’t have to stockpile the material. Boulden carries a huge inventory of stock sizes in the USA, Europe, and Singapore. You can generally receive whatever material you need in a matter of days.

 

To prepare your pump for whatever the future holds, please contact Boulden with your application details and dimensions. We’ll be happy to walk you through the installation details–assuming we have not been wiped out by an asteroid strike.

Todays Photo

All this talk of disaster is making me hungry. This is some excellent Bun Cha in Vietnam.

 

 

Helpful Links:

Standard Stock Sizes of Vespel® CR-6100

Vespel® CR-6100 Product Data Sheet

Vespel® CR-6100 Machining Guide

3MW Boiler Feed Pump Case Study

If you need any material or have any questions. Please contact us today. Until next time.

Contact Us Today To Learn More About Vespel and Boulden Company!