Tag Archives: wear ring clearance

When to Reduce the Clearance in Your Pump with DuPont™ Vespel® CR-6100

The industry “rule of thumb” says to reduce the wear ring clearance by 50%, but this isn’t always true.

Vespel® CR-6100 Upgrade Review

When you upgrade your pumps to Vespel® CR-6100, there are two steps:

  • Eliminate the metal-to-metal contact points in the pump
  • Reduce the running clearance (of the wear rings and throttle bushings)

However, you don’t always need to reduce the clearance. It depends on what you are trying to do and which component you are looking at. So, to determine whether or not to reduce the clearance, ask two questions:

 

What Problem am I Trying to Solve with Vespel® CR-6100?

Vespel® CR-6100 can be used to improve pump reliability and performance in many ways. Some benefits require reduced clearance, some do not. The following table gives some examples of where reducing clearance is needed vs. where it is not needed.

 

Reduced Clearance Required

Reduced Clearance Not Required

 

 

Is There Differential Pressure Across the Part?

Reducing the clearance can generally produce two beneficial effects in your pump:

  • Efficiency Improves: The leakage across the part will be reduced, improving pump efficiency and reducing the operating cost of the pump.
  • Improved Rotor Stability: The Lomakin Effect in the pump will be increased, increasing the hydraulic forces produce by the wear rings.

Both of these factors are driven by differential pressure across the part.

 

If the specific component you are upgrading to Vespel® CR-6100 is not exposed to differential pressure (i.e. vertical pump shaft bearing) there is no need to reduce the clearance.

 

Wear rings, throttle bushings, center bushings, balance bushings are all exposed to differential pressure. These are the parts where you want to reduce the clearance to obtain performance and rotor stability improvements. The rule of thumb is to reduce the clearance to 50% of the API minimum for metal parts. For most pumps in the hydrocarbon processing industry, this works.

 

These benefits are augmented using the patented PERF-Seal™ design from Boulden, which further reduces leakage across the part and dramatically increases the hydraulic damping from these components.

 

Exceptions to the 50% Wear Ring Clearance Rule

Because pumps come in all shapes and sizes, there are some places where we need to make exceptions and reduce the clearance by less than 50%.

  • Throat bushings-the throat bushing clearance often helps to control the mechanical seal flush rate. We recommend using the clearance recommended by your mechanical seal OEM to set the clearance of this part.
  • Wear rings in vertically suspended pumps-You don’t want to have the wear ring clearance tighter than the shaft bearing clearance. Therefore, our recommended minimum clearance for wear rings in vertically suspended pumps is the shaft bearing clearance + 0.002″ (0,05 mm).

Conclusions

Over the years, we have seen pump repair shops use a range of clearance values when applying Vespel® CR-6100 with great results. There is no single “best” way. That said, if you want to increase efficiency, you need to reduce the clearance of the parts exposed to differential pressure. If you are only trying to solve a run-dry or seizing problem, reducing the clearance is optional. For vertical pump shaft bearings, staying with the original design clearance is usually the best answer.

 

In any case, you can use our recommendations as a starting point. We supply these values in the clearance tables in our installation guide which you can download here:

 

Boulden Installation Guide for Vespel® CR-6100

 

Until next time, please feel free to contact Boulden if you would like to discuss the appropriate clearance for your pump upgrade. We’ll be happy to help and we have whatever material you need in stock in the USA, Europe, and Singapore.

 

Helpful Links on Vespel® CR-6100 and Wear Ring Clearance:

Standard Stock Sizes of Vespel® CR-6100

Vespel® CR-6100 Product Data Sheet

Vespel® CR-6100 Machining Guide

3MW Boiler Feed Pump Case Study

If you need any material or have any questions. Please contact us today. Until next time.

The Effect of Wear Ring Clearance on NPSHR

Recommended reading from the 32nd Pump Users Symposium, 2016

A Short Break

In recent weeks, we have discussed how an upgrade to composite wear rings allows you to avoid pump seizure, and therefore reduce the wear ring clearance in your pump. This reduction in clearance increases the Lomakin Effect in the pump and improves pump efficiency.

One thing we did not discuss is that reducing the wear ring clearance also reduces the pump NPSHR.

In the past, discussion of the relationship between pump NPSHR, wear ring clearance, and cavitation has led to many questions. Unfortunately, the answers to these questions are somewhat restricted due to limited testing on this topic.

Last year, there was a paper which provided some clear data on this subject. The authors used a pump test stand, two different impeller configurations, and wear rings at various clearances. We recommend taking a look at the following paper for greater technical insight into the relationship between wear ring clearance and pump NPSHR.

The Influence of Impeller Wear Ring Geometry on Suction Performance

by Thomas Leibner, David Cowan, and Simon Bradshaw

Published at the 32nd Pump Users Symposium

Houston, TX, September 2016

Until Next Time

In the near future, we will return to our series on upgrading pumps with Vespel® CR-6100, addressing how to upgrade specific pump configurations.

Contact Boulden For More Information

Until then, if you have a pump operating at less than 500 F (260 C) where you want to reduce the NPSHR, contact Boulden today. We have a huge inventory of Vespel® CR-6100 standard sizes in stock ready for immediate shipment almost anywhere in the world.

For application and installation details, download the Boulden Installation Guide for Vespel® CR-6100

Upgrading Pumps With Composite Wear Components Part: 9

Upgrading pumps with composite wear componentsPart 9: Vertically Suspended Pumps with Separate Discharge (API Type VS4)

Review

Last week, we looked at vertically suspended pumps with the discharge through the column. This week, we take a look at vertically suspended pumps with a separate discharge (API Type VS4).

Vertically suspended pumps with separate discharge are generally used for sump pumps or wastewater pumps. It seems that these pumps cause headaches at most plants. The shaft bushings wear out leading to chronic repairs. Over the years, Vespel® CR-6100 has been used in a lot of these pumps, sometimes the pump life has been extended from a few months to several years; sometimes the pump life has not improved. Therefore, it is important to identify the failure mode before making the upgrade. We have used our experience to create the roadmap below.

Define the Service

The first step is to clarify “sump pump” or “waste water pump”, which are generic terms encompassing a wide range of services. Some services are pumping primarily chemicals mixed with water, and some of them are pumping primarily water mixed with dirt. Some of the sumps are so dirty, that the pump suction strainer seems to be immersed in mud. Another variable is that the shaft bearings are flushed with different arrangements. Some of them are flushed with the process fluid, others with clean water, and others are greased.

Given the range of service conditions, there are several different problems which can cause the shaft bearings to fail. However, there are some commonalities. First, by design, the shaft bearings are along the column of the pump with a separate discharge for the process fluid. The bearings can run dry at start-up until the flushing fluid arrives. Sometimes, the external water flush is turned off; sometimes the flush lines from the process fluid are plugged; sometimes the grease supply runs out. In a chemical sump, the mix of chemicals can cause corrosion with metal wear parts. Finally, in very dirty sumps where the bearings are flushed with the process fluid, abrasive wear tends to be the main problem.

The Road Map

Considering the above, we have created the following table to guide your selection of where to use Vespel® CR-6100 in sump pump services:

Vespel CR-6100 sump pump services.

Vespel CR-6100 sump pump services.

*Some of the alternatives to consider are switching to a clean water flush or looking at an abrasive resistant, non-seizing combination for the shaft bushings and sleeve. This generally entails a hardened sleeve and an abrasive resistant bushing material. If you have any doubts about whether Vespel® CR-6100 is a good fit for your service, contact Boulden to discuss.

Vertical Pump Conclusion

To finish our discussion of vertically suspended pumps, we will talk about assembly and installation issues which impact pump reliability. Until then, use the above information as a guide on how to use Vespel® CR-6100 in your pumps with a separate discharge. If you need any material, contact Boulden. We have whatever size and quantity you need in stock and ready for immediate delivery.

For information on how to install Vespel® CR-6100 into nearly any centrifugal pump type, download the Boulden Installation Guide.

Contact Us Today To Learn More About Vespel and Boulden Company!

Contact Us Today To Learn More About Vespel and Boulden Company!

fbintw

ytg

Today’s Photo

Late Night Snack, Thailand

Late Night Snack, Thailand

 

 

 

 

 

 

 

Boulden Company

Conshohocken, PA, USA

1-610-825-1515

 

Boulden International, S.ar.L

Ellange, Luxembourg

+352 26 39 33 99

Upgrading Pumps With Composite Wear Components Part: 8

Upgrading pumps with composite wear components

Part 8: Vertically Suspended Pumps (API Types VS1–3, VS6, VS7)

Review

To date, we have addressed how to install DuPont™ Vespel® CR-6100 into the various horizontal pump types to eliminate metal-to-metal contact points in the pump and minimize the risk of pump seizure. This allows a reduction of clearance which improves efficiency and rotor stability.

This segment will discuss how to use Vespel® CR-6100 in vertically suspended pump types (API types VS1-VS7). These types can be further broken down as “discharge through column” (VS1, VS2, VS3, VS6, VS7) and “separate discharge” (VS4 and VS5).

Which Parts?

In vertically suspended pumps, we can upgrade the same components as horizontal pumps (wear ringsthrottle bushingsthroat bushings) for the same reasons-to eliminate the metal-to-metal contact areas in the pump and reduce the clearance resulting in improved reliability and efficiency.

Today we will focus on the components which are unique to vertically suspended pumps-the vertical pump shaft bearings: line shaft bearings, bowl bearings, and bottom bearings. Vespel® CR-6100 is ideally suited to this application, particularly in services which suffer from a lack of lubricity or may run dry at startup. Vespel® CR-6100 does not seize like metal alloys, it can survive running dry, and it can withstand mechanical impacts and thermal shocks so it doesn’t break like carbon or graphite.

Multi-stage LPG pump bowl assemblies being upgraded to Vespel® CR-6100.

Multi-stage LPG pump bowl assemblies being upgraded to Vespel® CR-6100.

One thing of note is that vertical pump shaft bearings do not have differential pressure across the parts, therefore, they do not impact pump efficiency. Because the clearance of these components tends to be rather tight, to begin with, a further reduction in clearance can easily lead to assembly issues with a limited upside associated with the tighter clearance. Therefore, our recommendation for these parts is to install the Vespel® CR-6100 into the spiders or bowl assemblies with the press fit shown in our installation guide, then final machine to the original design clearance.

In our installation guide, you will find two clearance charts–one for horizontal pump types, one for vertical pump types. Because we don’t want the wear ring clearance tighter than the shaft bushing clearance, we simply recommend making the wear ring clearance 0.002″ (0.05 mm) larger than the shaft bushing clearance in these pumps. In short, we highly recommend that you download the Boulden Installation Guide for Vespel® CR-6100.

Discharge Through Column

Vertically suspended pumps are often selected because the service offers poor suction conditions such as light hydrocarbon service or condensate. In a long-term study, a refinery upgraded 22 vertical pumps to Vespel® CR-6100 wear parts. The pumps were operating in light hydrocarbons, flare knockout drum, and several stop/start services like product transfer. In the 5 years prior to upgrading the pumps, this population of pumps comprised many “bad actors” with poor reliability. In the 5 years after upgrading the pumps to Vespel® CR-6100, there were only 8 repairs on the entire population of pumps and the MTBR of this group of pumps increased to more than 10 years!

The combination of excellent reliability with ease of machining and installation along with immediate stock availability has made Vespel® CR-6100 the material of choice in these applications.

Vertically suspended pumps assembled with Vespel®CR-6100 shaft bearings, wear rings, bowl bushings and bottom bearings

Vertically suspended pumps assembled with Vespel®CR-6100 shaft bearings, wear rings, bowl bushings, and bottom bearings

Vespel® CR-6100 can handle significant periods of dry running with minimal wear, making it easier to bring the pump online. When you upgrade your wear rings to Vespel® CR-6100 and reduce the clearance, you might also find the pump easier to start due to a reduction in the NPSHR (Net Positive Suction Head Required).

To be continued…

In the next two issues, we will address vertically suspended pumps with a separate discharge (API Type VS4) and then we will discuss installation and assembly issues unique to vertically suspended pumps.

Until then, if you have a vertical pump which is giving you headaches, consider upgrading the wear parts to Vespel® CR-6100. Contact us today. We have the Vespel® CR-6100 in stock in a wide range of sizes available for immediate delivery to nearly anywhere in the world.
For details on installing Vespel® CR-6100 into nearly any centrifugal pump type, download the Boulden Installation Guide.

Contact Us Today To Learn More About Vespel and Boulden Company!

Contact Us Today To Learn More About Vespel and Boulden Company!

 

 

 

 

 

fb

tw

yt

Boulden on Google+

 

Today’s Photo

Gardens by the Bay, Singapore

Gardens by the Bay, Singapore

Upgrading Pumps With Composite Wear Components Part: 4

Upgrading pumps with composite wear componentsPart 4: Which services, which machines, which parts to upgrade?

Review

In the first part of this series, we discussed how upgrading your pumps with composite wear parts can help avoid galling and seizing, even when a pump runs dry. Because composite parts do not gall or seize like metal parts, this allows you to reduce the clearance at these components in your pump.

In Part 2, we discussed how reducing the clearance at the wear ringsthrottle bushings, and center-stage bushings increases a stabilizing force in your pump called The Lomakin Effect. This force helps to reduce vibration and shaft deflection, leading to longer seal and bearing life in your pumps.

In Part 3, we discussed how reducing the clearance in your pump also improves pump efficiency, leading to a significant reduction in the life cycle cost of the pump.

Today, we start the discussion on how you can upgrade pumps, by looking at the specific services and components to upgrade with Vespel® CR-6100.

Service Conditions

Vespel® CR-6100 is manufactured from carbon fibers and Teflon™ PFA resin. It is chemically resistant to nearly all process fluids used in the hydrocarbon processing and petrochemical industries. Vespel® CR-6100 has been used in a wide range products including (but not limited to): refined hydrocarbons, aromatic hydrocarbons, LPG, amines, sour water, caustic, ammonia, MEK, demineralized water, hydrofluoric acid, and boiler feed water.

The temperature range of Vespel® CR-6100 is cryogenic to 500 F(260 C). It has been used in liquid methane and ethane pumps at -230 F (-150 C), along with liquid nitrogen and liquid hydrogen at even lower temperatures. At the upper end of the temperature range, Vespel® CR-6100 has been used in a wide range of hydrocarbon processing services such as gas oil and naphtha.

In general, composite materials are used for refined process fluids and relatively clean utility services. Vespel® CR-6100 is superior to metallic components in avoiding seizure, running with tighter clearance, and resisting wear due to internal contact between rotating and stationary components. Conversely, if you are dealing with a slurry service where abrasive wear is the main problem facing the pump, composite materials have some limitations. Please contact Boulden to discuss your application conditions.

Which Components

Vespel® CR-6100 will generally be used as the stationary wear parts in the pump. As we noted in the previous parts of this series, our objective is to eliminate the metal-to-metal contact points in the pump and replace them with metal-to-composite contact points. Vespel® CR-6100 is used for the stationary parts because it is stronger in compression than in tension. The rotating parts in the pump remain metal–with no special requirements for surface finishes or hardness beyond the original design of the metal parts.

Table 1 shows which parts are typically converted to Vespel® CR-6100 based on the pump type:

Overhung Pumps Between Bearings Pumps Vertically Suspended Pumps
Case wear rings Case wear rings Case wear rings
Throat bushings Throat bushings Throat bushings
Inter-stage bushings Line-shaft bearings
Center-stage bushings Bowl bearings
Throttle bushings Bottom bushings

Beyond centrifugal pumps, Vespel® CR-6100 can be used for a wide range of product-lubricated components such as agitator bearingsAPI Separator bearings, and gear pump bearings.

Until Next Time

In the next several segments of this series, we will discuss how to install Vespel® CR-6100 by pump type, discussing the differences between radially and axially split pumps, specific considerations for vertically suspended pumps, and some unique situations you might encounter.

Until then, if you have a pump operating at less than 500 F (260 C) where you want to improve the reliability or efficiency, contact Boulden today. We have a huge inventory of Vespel® CR-6100 standard sizes in stock ready for immediate shipment almost anywhere in the world.

For application and installation details, download the Boulden Installation Guide for Vespel® CR-6100

Boulden Company

Boulden Company

 

boulden footer

Upgrading Pumps With Composite Wear Components Part: 2

Part 2: Reduce Clearance–The Lomakin Effect

Welcome back to our series on upgrading pumps with composite materials. In part 1, we discussed how using composite materials like Vespel® CR-6100 in your pumps allows you to eliminate the metal-to-metal contact points in the pump and minimize the risk of pump seizure:

  • In the shop during assembly
  • In the field during alignment
  • During slow-roll, start-up, and shut down
  • During off-design events like dry-running or low flow

Part 2: Reducing Clearance-The Lomakin Effect

Minimizing the risk of seizure in your pump sets the stage for reducing the clearance at the wear parts in your pump. Reducing clearance can be a significant pump reliability upgrade due to a phenomenon known as the “Lomakin Effect“.

Your Wear Rings are Bearings

During pump operation, the flow created by differential pressure across the wear parts in the pump (wear rings, throttle bushings) creates a force called The Lomakin Effect. The force arises from an unequal pressure distribution around the circumference of the component during periods of rotor eccentricity. This force counteracts shaft deflection in the pump.

Figure 1 shows how shaft deflection creates this force. As the fluid enters the clearance between the rotor and wear component, it accelerates as it passes from the high pressure end to the low pressure end. Due to the eccentricity of the rotor, there is more clearance on one side of the wear part than the other. There will be more flow and a locally higher velocity on the side of the wear ring with more clearance and lower velocity on the side of the ring with less clearance. Higher velocity results in lower pressure; lower velocity results in higher pressure, creating a net corrective force which acts in the direction opposite of the shaft deflection. In other words, when your pump experiences shaft deflection, there is a hydraulic “stiffness” (Lomakin Stiffness) which is generated to counteract the shaft deflection.

Figure 1: The Lomakin Effect

Figure 1: The Lomakin Effect

Using Vespel® CR-6100 you can typically reduce the clearance at the pump wear rings by 50% compared to the API recommended minimum for metal wear parts. The Lomakin Stiffness is inversely proportional to clearance; therefore, a 50% reduction in clearance doubles this force. Potential benefits for your pumps include:

  • Less shaft deflection
  • Lower vibration levels
  • Fewer mechanical seal leaks
  • Longer bearing life

Which Pumps?

The Lomakin Effect is generally beneficial to all centrifugal pumps, but some pump types often show significant vibration reductions and reliability improvements with reduced clearance:

  • Multi-stage horizontal pumps
  • Older overhung pumps with long, thin shafts (high L/D ratios)
  • Two-stage overhung pumps

Conclusion

Reducing the clearance at the wear components can be a major reliability upgrade for your pumps. The reduced clearance increases The Lomakin Effect which improves pump rotor stability. The net result is a pump which runs with potentially lower vibration, fewer seal leaks, and longer bearing life.

Reducing the clearance also increases pump efficiency, which we will discuss in Part 3.

Until then, if you are working on a pump with a long, thin, flexible rotor, contact Boulden to discuss upgrading the wear parts to Vespel® CR-6100 and reducing the clearance. We have a huge stock of Vespel® CR-6100 standard sizes in the USA, Europe, and Singapore available for immediate delivery to your workshop.

For application and installation details, download the Boulden Installation Guide for Vespel® CR-6100